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Abstract

Improving the accuracy of multivariate time series (MTS) forecasts of wholesale elec-
tricity price (WEP) and the electricity grid carbon intensity factor (CIF) would support
participants in the energy sector to pursue both financial and environmental objectives.
Improved forecasts would positively contribute to operational planning, enhance market
responsiveness, and support environmentally-conscious scheduling and management of
electrical loads. Despite recent advances in MTS forecasting, challenges remain in deliv-
ering strong performance in modern electricity grids. These include the need for deriving
meaningful insights through comparative analysis within modern energy systems and
capturing the diverse dependencies and patterns in MTS data. This thesis, as part of
an industry PhD program, develops MTS-based deep learning models to address these
challenges and proposes novel forecasting methods for WEP and CIF. Specifically, an
experimental comparison is conducted between two main paradigms for CIF forecasting:
source-aggregated (e.g., data-driven) and source-disaggregated (e.g., formula-based),
under varying electricity grid settings and conditions. The findings from this preliminary
study highlight the sensitivity of forecasting accuracy to the penetration levels of variable
renewable energy generation. A Local-Temporal Convolutional Transformer model is
proposed for WEP forecasting under volatile and rapidly changing market dynamics.
This addresses the challenge of capturing fine-grained local-temporal dependencies (e.g.,
hourly price changes) using Local-Temporal 1D Convolution by applying convolutional
kernels to overlapping segments of varying lengths and incorporates two attention mod-
ules to capture global-temporal dependencies (e.g., daily price trends) and cross-variable
dependencies (e.g., solar output influencing price). Additionally, while addressing the
challenge of capturing fine-grained local-temporal dependencies through extracting lo-
calized time-frequency features, a source-aggregated-based model is further developed
to tackle the challenges of modeling dynamic higher-order cross-variable dependencies
and extracting diverse multi-frequency information for CIF forecasting. This model
integrates two parallel modules: the Local-Temporal Multi-Wavelet Kernel Convolution,
which enhances the extraction of local-temporal dependencies under multi-frequency by
applying multiple wavelet-based convolutional kernels, and the Cross-Variable Dynamic-
Wavelet Correlation Convolution, which captures dynamic cross-variable dependencies
under multi-frequency to model how inter-variable relationships evolve across the time-
frequency domain. Testing across electricity grids in four Australian states with different
fuel mixes demonstrates that the proposed models achieve state-of-the-art performance
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in both WEP and CIF forecasting, with their effectiveness and adaptability validated
under diverse modern grid conditions.
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Chapter 1

Introduction

1.1 Background

Electricity underpins modern life by powering homes, industries, and infrastructure, and

its demand continues to grow in parallel with steady global population growth [3]. The

increasing penetration of intermittent renewable energy sources, such as wind and solar,

aims to meet this rising demand and support the transition towards a low-carbon energy

system. However, their fluctuating nature and limited controllability, typically driven by

varying weather conditions, introduce significant operational complexities for electricity

network management [4, 5]. Modern electricity grids are rapidly evolving to accommodate

rising levels of intermittent renewable penetration [6], increasingly complex demand-side

control and responsiveness [5], and highly dynamic market conditions [7]. To support

this transformation, real-time monitoring [8], computational intelligence [9], and power

system forecasting [10–12] are increasingly integrated across both supply and demand

to enable intelligent, data-driven coordination of energy flows and ensure effective grid

operation. This technological evolution supports the transformation of the global energy

sector toward optimized operations that promote cost savings and sustainability.

A wide range of dynamic signals (e.g., behaviors of suppliers, consumers, and pro-

sumers) collected from diverse sources is essential for the effective planning, operation,

and regulation of modern electricity grids [13–15]. Among these, the wholesale elec-

tricity price (WEP) and, more recently, carbon intensity factor (CIF) have emerged as

critical signals, reflecting the dual imperatives of economic operation and environmen-

tal sustainability. Accordingly, this thesis centers on forecasting short-term WEP and

CIF time series as decision-enabling signals that serve as a step towards data-driven

decision-making across the electricity ecosystem.
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CHAPTER 1. INTRODUCTION

The importance of wholesale electricity price forecasting The WEP represents

the real-time marginal cost of electricity based on supply and demand dynamics in the

wholesale market, reflecting the price at which generators sell electricity to retailers

and distribution entities [16]. Accurate WEP forecasts play a crucial role in electric-

ity markets, where several stakeholders engage in strategic interactions to optimize

their respective outcomes [17–19]. It enables energy generators to adjust production

schedules [10, 20], large-scale storage operators to optimize charge and discharge strate-

gies [21, 22], and load centers to mitigate price exposure through demand-side man-

agement [23]. Additionally, WEP forecasting enables energy suppliers and large-scale

consumers to identify optimal times for buying or selling electricity [24]. Ultimately, this

potentially supports more effective and coordinated market behavior and contributes

to both market and system stability by improving supply-demand alignment and en-

abling proactive demand-side responses during periods of expected scarcity or peak

demand [16, 25].

The importance of carbon intensity factor forecasting Each power plant that

generates electricity releases carbon emissions per unit of grid electricity generation, com-

monly referred to as the carbon emission rate for each generator/power plant [26]. The

CIF is determined by the combination of electricity generation on the network and the

carbon emission rate [27]. Accurate CIF forecasts enable carbon-aware decision-making

by consumers, aggregators, and businesses [28]. Illustrative examples of leveraging

time-series CIF forecasts include pre-cooling buildings when carbon intensity is minimal,

optimizing battery storage to align with cleaner energy availability, and scheduling

electric vehicle charging to occur during low-emission periods. To explore one of these

strategies in more detail, if an accurate CIF time-series forecast is available, commer-

cial building operators can schedule the operation of the heating, ventilation and air

conditioning (HVAC) systems to operate most often during periods of forecast low CIF

[29]. Enabling this sort of emissions-aware management of load plays a key role in

reducing overall CO2 output and supporting climate targets set by, for example, the Paris

Agreement [30].

Complexities in multivariate time series forecasting of WEP and CIF However,

due to dynamic fluctuations in the generation mix, such as varying renewable energy

output, fossil fuel ramping, and demand-side shifts, the WEP and CIF often exhibit sig-

nificant temporal variability. Even with the increasing adoption of deep learning models,

2



1.2. CONTRIBUTIONS

the energy sector continues to face challenges in accurately forecasting WEP and CIF,

as modern electricity grids introduce inherent complexity, volatility, and multi-variable

dependencies that existing models often struggle to capture effectively. Current research

often frames the challenge of modeling such complex patterns and dependencies as a

multivariate time series (MTS) forecasting problem. MTS forecasting involves predicting

future target values using information from multiple, potentially interrelated input vari-

ables over time. WEP or CIF datasets often comprise multiple interrelated time series

that exhibit rich temporal dynamics, inter-variable interactions, and diverse frequency

characteristics. While existing studies have made progress, they still face challenges

in effectively capturing these dependencies and patterns critical to improving forecast-

ing accuracy for WEP and CIF series. This thesis identifies three key dependencies

and patterns that remain challenging to capture in MTS forecasting: local-temporal
dependencies (LTD), cross-variable dependencies (CVD), and multi-frequency information
(MFI).

1.2 Contributions

This thesis focuses on conducting comparative analyses to gain insights into modeling

approaches, developing deep learning models to address critical modeling challenges,

and proposing novel methods based on these models for forecasting the WEP and CIF in

modern electricity grids. Specifically, this thesis, conducted as part of an industry PhD

program, makes the following contributions for practical deployment in the energy sector

and for theoretical development in the research community.

• Existing methods for CIF forecasting can be categorized into the source-aggregated
approach (SAA), attempting to produce a single carbon intensity forecast for the

entire system, and the source-disaggregated approach (SDA), focused on delivering

individual generation forecasts for each potential source (e.g., wind, solar, coal, etc.).

This distinction highlights an ongoing consideration in MTS forecasting: whether a

data-driven approach, exemplified by SAA, enables more effective modeling than a

formula-based approach, exemplified by SDA, for forecasting signals in the energy

sector.

– An experimental comparison is conducted between the SDA and SAA for

day-ahead CIF forecasting. The strengths and limitations of each paradigm

are revealed under varying grid conditions and renewable penetration levels.

3



CHAPTER 1. INTRODUCTION

– Recommendations are provided based on empirical findings from the compari-

son to guide the selection of CIF forecasting approaches, with consideration

for operational scenarios in modern electricity markets, including factors such

as fuel-mix stability and regional generation profiles.

– A foundation is also established for understanding how grid conditions affect

the forecasting performance of deep learning models and for informing the

use of the SAA paradigm for CIF forecasting throughout the remainder of the

thesis.

• LTD refers to short-term periods and the temporal patterns in adjacent time

steps within each individual input time series. For instance, in a WEP series at

hourly intervals, LTD may represent local WEP patterns that emerge within a few

hours. Existing MTS forecasting methods that attempt to capture LTD often face

challenges in modeling dependencies across adjacent time steps and extracting

fine-grained temporal patterns. For MTS-based WEP forecasting, in addition to

modeling LTD, it is also important to integrate global-temporal dependencies

(GTD), which capture long-range temporal patterns (e.g., daily price trends), and

incorporate CVD, which enhances forecasting by accounting for dependencies

among variables (e.g., solar output influencing price).

– A novel segment-based method is introduced to align inter-segment depen-

dencies and preserve intra-segment information, effectively addressing the

challenge of capturing LTD in MTS forecasting.

– The Local-Temporal Convolutional Transformer (LT-Conformer) model is

designed to capture local temporal patterns while simultaneously integrating

GTD and CVD, with its parameters tailored based on the characteristics of

WEP.

– In the Australian electricity market, the proposed model achieves state-of-the-

art (SOTA) forecasting performance and demonstrates strong adaptability to

volatile operating conditions.

• MTS data inherently reflect MFI within variation patterns, including both high-

frequency fluctuations and low-frequency trends shaped by diverse grid dynamics.

For instance, high-frequency components are associated with rapid and abrupt

changes, often driven by sudden demand shifts, renewable energy generation

intermittency, or operational adjustments. In contrast, low-frequency components
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represent smoother and more gradual variations that arise from stable patterns

in generation or consumption. In MTS-based CIF forecasting, LTD, CVD, and

MFI are critical dependencies and patterns that should be effectively captured.

However, current methods struggle to simultaneously capture fine-grained LTD,

model dynamic higher-order CVD, and extract diverse MFI.

– A module is proposed to address the challenges of capturing fine-grained LTD

across multiple frequencies by combining adaptive segmentation with diverse

wavelet-based convolutional kernels.

– A module is introduced to address the challenge of capturing dynamic CVD

in the time-frequency domain by modeling the evolution of inter-variable

relationships over time and across frequencies.

– By integrating the two proposed modules, SOTA predictive performance

is achieved in short-term CIF forecasting, outperforming existing methods

across four distinct Australian electricity markets characterized by volatile

and stable CIF patterns.

1.3 Publications

1. B. Zhang, H. Tian, A. Berry, H. Huang, and A. C. Roussac, “Experimental Compar-

ison of Two Main Paradigms for Day-Ahead Average Carbon Intensity Forecasting

in Power Grids: A Case Study in Australia,” Sustainability, vol. 16, no. 19, 2024.

2. B. Zhang, H. Tian, A. Berry, and A. C. Roussac, “A Local-Temporal Convolutional

Transformer for Day-Ahead Electricity Wholesale Price Forecasting,” Sustainabil-
ity, vol. 17, no. 12, 2025.

3. B. Zhang, H. Tian, A. Berry, and A. C. Roussac, “Improving day-ahead grid carbon

intensity forecasting through joint modeling of local-temporal and cross-variable

dependencies across different frequencies using wavelet-based CNNs,” To be sub-

mitted to AAAI 2026.

1.4 Thesis Structure

The structure of this thesis is shown in Figure 1.1 and summarized below:

5



CHAPTER 1. INTRODUCTION

Chapter 2 provides a critical review of the state-of-the-art in CIF and WEP forecasting,

with a particular focus on MTS modeling techniques. Firstly, existing methods and

challenges in CIF and WEP forecasting are introduced, followed by a discussion of their

underlying modeling limitations and challenges. The review then shifts to contemporary

methods for MTS forecasting in general, aiming to identify promising directions for

addressing the limitations found in CIF and WEP forecasting, while highlighting areas

that remain underexplored or not yet fully integrated.

Chapter 3 introduces the first contribution, which conducts an empirical comparison

of SDA and SAA approaches for CIF forecasting, offering practical insights based on

real-world Australian energy data. The insights gained from this preliminary work serve

as both the context and foundation for applying the SAA paradigm to CIF forecasting

throughout the remainder of the thesis.

Chapter 4 introduces a novel segment-aware deep learning model for WEP forecasting,

addressing LTD modeling limitations while jointly capturing GTD and CVD.

Chapter 5 introduces a unified wavelet-based deep learning framework for CIF

forecasting that addresses the limitations in capturing LTD and dynamic CVD under

MFI, with integrated interpretability.

Finally, Chapter 6 concludes the thesis by summarizing the contributions, discussing

practical implications, and outlining directions for future work.

6



1.4. THESIS STRUCTURE

Figure 1.1: Thesis structure.
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Chapter 2

Literature Review

This chapter presents a review of the background and related literature to frame the

research context for this thesis. It begins by reviewing forecasting methods applied in the

energy sector in Section 2.1, focusing on CIF and WEP forecasting techniques. Following

this, the chapter shifts to a broader examination of MTS forecasting in Section 2.2, sum-

marizing developments across traditional statistical methods, classical machine learning,

and modern deep learning. Each section concludes with a discussion highlighting the

limitations of current methods and identifying open research challenges that shape the

methods employed in this thesis.

2.1 Review of Forecasting Methods in the Energy
Sector

This section reviews relevant literature across two key domains in the energy sector: CIF

and WEP forecasting. The review evaluates existing methods, outlining their strengths

and limitations, and highlights emerging challenges and research directions.

2.1.1 Carbon Intensity Factor Forecasting

Previous studies have explored various aspects of carbon emissions forecasting, including

general CO2 emissions [31–36], carbon flux estimation [37], and emissions from fuel

combustion [38].

According to the studies [27, 39], grid CIF can be categorized into marginal and

average CIF. The marginal CIF indicates which energy generator(s) would respond to a

change in demand, capturing the associated emissions impact of the marginal generator,
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whereas the average CIF accounts for the total emissions produced across the entire

electrical grid over a specified interval (e.g., an hour) [40]. The differences between

average and marginal carbon intensity have been analyzed in [40]. The marginal CIF is

highly dependent on the dispatch order and the availability of generators. While some

studies have applied machine learning techniques to marginal CIF forecasting [41, 42],

the focus in this thesis is on grid average CIF, as it offers a measure of overall emissions

per unit of electricity generated, providing a more interpretable assessment of carbon

intensity trends within the electricity system.

Average CIF quantifies the emissions produced per kilowatt-hour (kWh) of electricity

and is defined as:

(2.1) CIFavg,t =
∑

(Er,t ×Cr)∑
Er,t

where CIFavg,t denotes the average CIF across time interval t, Er,t represents the

electricity generated by source type r during the same period, and Cr corresponds to the

emission rate of source type r.

As discussed in Section 1.2, forecasting CIF can be categorized into two main ap-

proaches [43]: the source-disaggregated approach (SDA) and the source-aggregated

approach (SAA).

2.1.1.1 Source-Disaggregated Approach

The SDA method forecasts power generation from individual fuel sources, including re-

newables (e.g., wind, solar, hydro) and non-renewables (e.g., coal, gas), before aggregating

them to compute CIF using predefined emission factors [43].

Diptyaroop et al. [26] predicted day-ahead hourly average carbon emission using the

SDA. The Artificial Neural Network (ANN) model was applied to forecast electricity

generated by each power source. Weather forecasting and time features as input variables

were considered in the ANN model to extract the trends and seasonality in the data. This

method was assessed using actual power generation data and attained an average mean

absolute percentage error (MAPE) of 6.4% across Europe and the US. However, some

regions with high renewable energy penetration, such as Germany, exhibited greater

errors with an MAPE of 9.08%.

In 2022, Diptyaroop et al. [44] proposed a similar method as [26] to forecast the grid

average carbon intensity. With historical generation and weather variable data inputs,

the deep learning model Convolutional Neural Network with Long Short-Term Memory
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combination (CNN-LSTM) was used to generate 4-day-ahead carbon intensity forecasts,

which achieved a 9.78% MAPE across 13 geographically distributed regions over the

96-hour forecasting period with hourly intervals.

2.1.1.2 Source-Aggregated Approach

Unlike the SDA, which forecasts outputs from different generators or fuel sources prior

to aggregation into a CIF measure, the SAA forecasts the CIF directly. The SAA, with

its focus on system-level dynamics and the aggregation of all generators, provides a

single CIF forecast for the entire system [43]. Early studies in this space relied on the

Autoregressive Integrated Moving Average (ARIMA) model [42, 45, 46]. ARIMA has

known limitations with respect to capturing the types of complex non-linear relationships

that are likely to exist in grid carbon intensity forecasting over time. ARIMA is explored

in further detail in the context of general MTS forecasting in Section 2.2.1. As such, more

recent studies have turned their attention to deep learning, particularly Long Short-Term

Memory Networks (LSTMs) [47–50] and hybrid models [51], for CIF forecasting.

Gordon [45] presented a method to forecast the average half-hourly CIF of the United

Kingdom (UK) electricity grid on a day-ahead basis to support planned demand response

actions aimed at reducing carbon emissions. The paper revealed that the carbon intensity

of the grid varies throughout the day and follows daily and weekly seasonal patterns.

This study applied the ARIMA to forecast 24 hours ahead grid CIF without requiring

multiple exogenous data sets and enabled a building operator to reduce carbon emissions

by shifting their HVAC loads to low-emission periods. The forecast method would enable

building operators to plan demand response activity to target times of high carbon

intensity on the UK electricity grid.

Kenneth et al. [42] developed a feature selection method combined with LASSO

regression and an ARIMA residual correction method to predict day-ahead average

hourly carbon emissions in the European power industry. This research considered 473

variables, including weather conditions, real-time generation from each power plant, and

historical load, using feature selection methods to select 30 variables for prediction. Then,

the periodic trends were analyzed by combinations of Linear Regression (LR) models.

Finally, the ARIMA model was applied to correct the residuals in the dataset.

Neeraj et al. [46] applied decomposition methods and ARIMA to predict average

hourly CO2 emissions two days in advance. This study combined carbon intensity with

market bidding and analyzed the effect of carbon emissions forecasting on electricity price

schedules. A statistical method was used to disintegrate time series data into seasonal,

11



CHAPTER 2. LITERATURE REVIEW

trend, and random series components. High-frequency, low-frequency, and trend series

components were decomposed by the ensemble empirical mode decomposition method.

Lastly, the ARIMA model was used to forecast based on each pattern, with an MAPE of

11.46%.

Santos et al. [52] propose an evolving discrete Dynamic Bayesian Network (DBN)

framework for forecasting carbon emissions in multi-source power generation systems,

which dynamically adapts its structure over time using frequency-based edge selection.

Trained and tested on real hourly electricity generation data from European countries,

the DBN method demonstrates improved forecasting accuracy over traditional machine

learning models, particularly for short-term horizons with hourly intervals, while main-

taining computational efficiency suitable for real-time applications.

Ostermann et al. [53] investigate short-term forecasting of generation-based CO2

emission factors in Germany at an hourly resolution using both parametric and non-

parametric time series models. The study evaluates a range of statistical, machine

learning, and deep learning models. Results show that gradient boosting and Random

Forest (RF) deliver the best predictive performance (e.g., Mean Absolute Error (MAE) of

40.66 g CO2-e/kWh, Root Mean Square Error (RMSE) of 57.61 g CO2-e/kWh), while deep

learning models exhibit promising potential with further tuning. The authors highlight

the importance of probabilistic forecasting and advocate for real-time, operationally

deployable emission prediction systems.

While effective for simpler patterns, statistical models struggle to capture the com-

plex nonlinear relationships and intricate dependencies present in modern grids. Deep

learning methods, particularly LSTMs, have demonstrated strong performance in CIF

forecasting across various applications. Recent research [47–51] has confirmed the effec-

tiveness of LSTM models in CIF forecasting across various applications.

Riekstin et al. [49] propose a time series-based framework using LSTM networks

to forecast day-ahead CIF at an hourly resolution for electricity consumption in smart

homes. The model leverages historical emission data along with utility-provided day-

ahead forecasts of demand and renewable generation. Tested on datasets from several

regions, the LSTM model achieves high accuracy, particularly in non-renewable dominant

regions (MAPE as low as 2%), and performs better than traditional regression models.

The predicted emissions are used in real-world case studies for smart device scheduling

and electric vehicle charging, demonstrating emission reductions without compromising

user comfort.

Cai et al. [48] propose a day-ahead with 15-minute intervals carbon emission factor
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forecasting method for regional power grid nodes using an LSTM network. The model

incorporates historical time series data of load, CIF, and transmission losses and applies

the proportional sharing principle to compute node-level emission factors. Implemented

on the synthetic data, the framework accurately predicts dynamic changes in load, power

loss, and emissions.

The research conducted by Vahid et al. [54] focused on predicting day-ahead regional

emissions intensity in Australia at an hourly resolution using machine learning tech-

niques. Several models were compared, including Extremely Randomized Trees (ERT),

LSTM, and Extreme Learning Machines (ELM), trained on historical data comprising

CIF, weather, electricity demand, and generation. In New South Wales (NSW), both

LSTM and ERT models exhibited reasonable accuracy in forecasting emissions intensity,

yielding RMSE values of 42.9 g CO2-e/kWh and 46.3 g CO2-e/kWh. The study finds

that forecasting is more accurate in regions with low renewable generation and during

periods of high demand.

Peng et al. [50] propose a probabilistic day-ahead CIF forecasting framework at

hourly intervals, combining Hodrick-Prescott time series decomposition with a quantile

regression LSTM model trained using pinball loss. The method separates the carbon

intensity signal into trend and cycle components, then applies point forecasting to

the trend and probabilistic forecasting to the volatile cycle using historical CIF and

electricity generation variables. Evaluated on real-world datasets from the United States

of America (USA) and Denmark regions, the proposed LSTM model outperforms several

deep learning models like Artificial Neural Networks (ANNs) and Recurrent Neural

Networks (RNNs), achieving lower MAE values, such as 24.79 g CO2-e/kWh in the USA

and 20.67 g CO2-e/kWh in Denmark.

Zhang et al. [51] propose a GNN-LSTM-based forecasting model (CFCG) to ad-

dress the challenge of day-ahead carbon intensity prediction at an hourly resolution in

cross-border power grids, where spatial carbon flows from electricity imports must be

considered. Their model integrates a multi-periodic encoding scheme, a GNN for spatial

dependencies, and an LSTM for temporal patterns. Trained on real-world hourly gener-

ation and flow data from 28 European countries, CFCG achieves up to 26.46% MAPE

improvement in forecasting accuracy compared to SOTA regional and neighbor-based

models.
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2.1.1.3 Discussion

To date, no direct comparison has been made between the underlying SDA and SAA

frameworks within the same operational context using real-world energy data, nor

has there been an investigation into how factors such as renewable penetration and

generation mix influence their relative effectiveness. As a result, practitioners have

limited guidance on when and where each method is most appropriate, and what trade-

offs may be involved. Additionally, the impact of wholesale electricity prices and grid

demand on model behavior and forecasting accuracy remains largely unexplored, an

important gap in contexts like Australia and the UK, where price and demand play a

critical role in generator dispatch and operational decisions [55, 56].

Additionally, despite recent advancements in CIF forecasting, several limitations

remain. Existing methods [43, 44, 54] tend to exhibit reduced forecasting accuracy in

volatile grid conditions, particularly in regions with high renewable energy penetration,

where carbon intensity patterns become increasingly unpredictable. This is partially

due to their reliance on point-based input representations, which limit their ability to

capture LTD. Moreover, dynamic CVD and MFI, both of which are critical for modeling

complex grid behavior, are rarely considered in current CIF forecasting models.

2.1.2 Wholesale Electricity Price Forecasting

WEP refers to the price at which electricity is traded between generators and retailers

in competitive power markets [25]. The electricity spot market typically functions as a

day-ahead market, where participants submit bids based on their generation costs and

anticipated supply capacities to meet forecasted demand at the lowest cost [16, 57]. For

example, in the Australian National Electricity Market (NEM), these bids are submitted

for each hourly interval on day d̂ before the market closes on day d̂−1. Participants are

further allowed to revise their bids during the 5-minute pre-dispatch schedule following

the initial submission [58]. The resulting market-clearing price reflects the marginal

cost of supplying electricity at a specific time and location, influenced by factors such

as generation mix, network constraints, and demand fluctuations [16, 57]. Unlike retail

tariffs, WEP is highly volatile, exhibiting sharp intraday fluctuations, seasonal trends,

and occasional spikes driven by unforeseen events such as equipment failures or weather

anomalies.

WEP forecasting has attracted considerable research attention, with a wide range

of studies employing traditional statistical methods, classical machine learning, and
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modern deep learning1. In the following sections, we will explore each of these areas in

turn.

2.1.2.1 Traditional Statistical Methods

Traditional statistical methods aim to establish mathematical relationships between

input variables and target variables based on predefined assumptions or rules, such

as linearity [59]. Early work by [60] outlined key challenges in forecasting electricity

prices in liberalized markets, emphasizing the relevance of time series models and the

influence of strategic bidding behavior. Building on this foundation, a study [61] proposed

a forecasting framework that integrates a regression-based autoregressive fractionally

integrated moving average model to capture long-term dependencies and seasonal pat-

terns for time-varying volatility in daily electricity spot prices. Further advancements

by [62] incorporated fundamental market variables through models with time-varying

and regime-switching coefficients, enhancing day-ahead forecasting accuracy. Another

study [63] employed multiple LR techniques to provide interpretable insights into the

significance of different predictors. In contrast to these purely statistical models, a hybrid

fundamental-econometric model [64] was proposed to integrate supply-side fundamen-

tals with econometric methods, offering a more comprehensive representation of price

formation in deregulated electricity markets.

Statistical models often forecast WEP by leveraging mathematical formulations that

relate historical prices to exogenous factors such as energy generation, load demand,

and weather conditions. Their appeal lies in the interpretability of their components,

which often reflect physical or economic mechanisms, allowing stakeholders to gain

meaningful insights into price formation. However, the non-linear, non-stationary nature

of electricity markets, amplified by increasing renewable integration, extreme price

volatility, and evolving market conditions, poses significant challenges for these models.

These statistical models fall short in capturing complex temporal dependencies, abrupt

price spikes, and interactions among multiple variables, leading to reduced accuracy

and higher predictive uncertainty [16, 57]. As a result, recent research has increasingly

shifted toward classical machine learning and deep learning models, which offer greater

flexibility and capacity to model the intricate behaviors inherent in modern electricity

markets.

1It is important to note that deep learning is considered a subset of machine learning.
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2.1.2.2 Classical Machine Learning

Classical machine learning refers to algorithms that learn from data by identifying

patterns linking predictors to the target variables [65]. Such methods can capture

nonlinear relationships within datasets and can be applied effectively even with limited

domain knowledge. Several studies have explored machine learning models for WEP

forecasting, leveraging their ability to capture non-linear patterns and integrate diverse

input features.

One study [66] applies ensemble learning by combining RF, Support Vector Machines

(SVR), and other models to capture both stochastic and deterministic components of

price dynamics in the Italian market, achieving promising performance. Additionally,

RF and SVR models incorporating exogenous features and signal decomposition are also

evaluated in [67] across various time series regimes, confirming their strength in han-

dling complexity and delivering robust day-ahead forecasts. Another study [68] develops

a collaborative intelligence framework that integrates a wide array of statistical and ma-

chine learning models using AutoML platforms and interpretable artificial intelligence,

offering accurate forecasts while enhancing model transparency and human-machine

interaction. The single RF model leveraged in [69] is applied to the New York market for

real-time forecasting, demonstrating high responsiveness to short-term changes in load,

temperature, and historical price patterns. In Germany and Finland, an ELM-based

bootstrap model used in [70] captures market volatility and reduces uncertainty, showing

adaptability to regional dynamics.

While results have been promising, these machine learning methods are often limited

in their ability to model long-term temporal dependencies and high-dimensional vari-

able interactions, limiting their effectiveness in volatile and non-stationary electricity

markets, which has led to growing interest in deep learning models capable of capturing

such complexities more effectively.

2.1.2.3 Modern Deep Learning

Deep learning refers to a class of machine learning techniques that use neural networks

with multiple processing layers to automatically learn data representations at increasing

levels of abstraction [71]. By leveraging large datasets and the backpropagation algo-

rithm, deep learning models have achieved significant progress in capturing complex

temporal patterns, nonlinear dependencies, and long-range interactions in time series

data [72, 73].
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Artificial Neural Network-based Models ANNs were among the earliest deep

learning models applied in electricity price and load forecasting. A study [74] proposed

an hours-ahead forecasting framework for the Victorian (VIC) market in Australia using

two separate ANN models, one for load and another for price, where a similar-day

selection method was used to improve the relevance of historical data. This method

demonstrated that ANN could effectively capture temporal patterns when supported by

contextual preprocessing. Another study [75] explored ANN in a composite framework

alongside fuzzy regression and classical regression, aiming to improve long-term price

forecasting under noisy and uncertain environments. These studies illustrate that while

ANN alone may struggle with highly volatile or nonlinear signals, its flexibility enables

it to be combined with other techniques for enhanced robustness.

Recurrent Neural Network-based Models RNNs have been widely applied to

capture sequential dependencies in electricity price time series. Standard RNNs were

initially used for day-ahead forecasting by leveraging historical patterns, though their

effectiveness is often limited by vanishing gradient issues in long sequences [76]. To

overcome this, LSTM-based models gained popularity due to their gated structure and

improved memory handling. One method employed LSTM within a two-stage hybrid

system combining Variational Mode Decomposition and Convolutional Neural Network

(CNN), enhancing performance through signal decomposition and residual correction [77].

Another design fused LSTM and CNN into an integrated network with a conditional error

correction layer for real-time market prediction [78]. Gated Recurrent Unit (GRU) models,

as a streamlined alternative to LSTM, were also adopted to reduce training complexity.

A notable example is the TriConvGRU framework, which captured multi-frequency

patterns using parallel CNN-GRU branches and demonstrated strong performance

across both univariate and multivariate setups [79]. These developments reflect a shift

from basic recurrence to more structured, hybrid recurrent models that balance accuracy

and computational efficiency.

Convolutional Neural Network-based Models Convolutional Neural Networks

(CNNs), known for their effectiveness in extracting local and hierarchical patterns from

structured inputs, have been widely adopted in electricity price forecasting to capture

temporal features, reduce noise sensitivity, and manage high-dimensional inputs. One

study [80] used CNN as the core forecasting engine, where it processed denoised feature

representations derived via Principal Component Analysis, with Mutual Information
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applied beforehand for feature selection-positioning CNN as the primary learner over a

compressed and relevant input space. In addition to their use within RNN frameworks,

where CNNs function as local feature extractors that encode spatial patterns from input

sequences to support downstream temporal modeling [77–79], CNNs have also been

embedded within heterogeneous ensemble models and optimized using the Coronavirus

Herd Immunity Optimization algorithm. In this setup, CNNs extract localized patterns

from input sequences before passing the features to an ensemble of learners.

Attention-based Models Attention mechanisms were increasingly integrated to

address limitations in modeling long-term dependencies and dynamic feature relevance.

Initial efforts focused on enhancing sequential models with lightweight attention layers

to emphasize relevant temporal features. A study [81] integrated a five-head attention

mechanism into a GRU-based architecture, enabling improved real-time price forecasting

under volatile conditions and offering interpretability through both attention scores

and SHAP analysis. A dense skip attention structure by [82], combining advanced

residual unshared CNN and GRU modules, was proposed to simultaneously handle

temporal and feature-wise variability, with skip connections enhancing robustness in

deep models. Further developments in [83] introduced an attention-enhanced LSTM

framework that integrates empirical wavelet decomposition with attention mechanisms,

specifically addressing the challenges posed by high renewable energy penetration. A

hybrid forecasting framework was proposed in [84], combining 1D convolutional neural

networks with a multi-head self-attention mechanism to capture both local temporal

patterns and long-range temporal dependencies in electricity price data.

2.1.2.4 Discussion

Recent advances in WEP forecasting have shown a clear evolution from shallow ma-

chine learning models toward more expressive deep learning architectures. Within deep

learning models, early applications of ANNs laid the foundational work for mapping

electricity price signals, particularly when combined with contextual feature selection

methods. Nevertheless, standalone ANNs often struggle with learning complex tempo-

ral sequences or handling noisy and uncertain market signals. Recurrent models such

as RNNs, LSTMs, and GRUs introduced explicit mechanisms for modeling sequential

patterns. These structures show marked improvements in capturing periodicity and

volatility but often still fall short in flexibility when modeling fine-grained local features

or global dependencies beyond limited lag horizons.
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CNN-based models have addressed the challenge of local pattern learning by lever-

aging convolutional filters to capture short-term dependencies and localized features

within time series inputs. In hybrid architectures, CNNs are often employed as feature

extractors prior to recurrent layers or ensemble learners, enabling more effective repre-

sentations of high-dimensional input sequences. However, most existing CNN models

rely on fixed windowing schemes or point-wise inputs, which may overlook dynamic local

structures and contextual dependencies over varying temporal scales.

Recent attention-based studies integrate self-attention and multi-head mechanisms

into recurrent or convolutional backbones, providing models with the capability to

learn long-range temporal dependencies and highlight relevant features under complex

conditions, such as those driven by high renewable energy penetration or extreme

demand spikes. Despite their success, many of these methods still treat temporal or

variable relationships in isolation or lack explicit mechanisms for fusing local, global,

and cross-variable dependencies in a unified way. For instance, several models focus

solely on temporal dynamics within individual variables, ignoring interdependencies

across variables, while others emphasize variable-level dependencies without adequately

capturing how they evolve over time. However, accurate WEP forecasting in deregulated

and renewable-integrated markets demands a holistic modeling framework.

2.2 Review of Multivariate Time Series Forecasting

Existing studies have investigated forecasting methods for grid-level CIF and WEP.

While the results have been promising in these studies, limitations still exist and often

arise from the inherent challenges of MTS forecasting, where models must account

for temporal dynamics within each series, interactions among variables, and complex

frequency characteristics under volatile grid conditions. It is helpful to broaden our

review to include more general MTS forecasting methods in order to understand which

architectural designs, dependency modeling techniques, and data representations have

proven effective and where current methods still fall short.

A time series is a collection of data points ordered chronologically and gathered

at specified time intervals. A time series often consists of three components: trend,

seasonality, and irregular components [85]. The trend represents the long-term change

in the interval of time, with different types such as linear, exponential, or parabolic.

Seasonality, also known as cyclic oscillations, introduces variation and a repeating

pattern at regular intervals. The irregular components, also called residuals, refer to
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random noise or unexpected changes that cannot be explained by the overall trend or

regular seasonal patterns.

An MTS consists of multiple time-series variables. In MTS forecasting, given his-

torical observations X= {x1, . . . ,xT} ∈RT×N , where T is the length of the time step and

N is the number of variables, the goal is to predict the future S time steps of multiple

target variables Y= {xT+1, . . . ,xT+S} ∈RS×N [86]. MTS forecasting is often expressed as

short-term or long-term [72, 87]. Short-term forecasting typically involves predicting

values from a few minutes to several days ahead, while long-term forecasting extends

over longer horizons such as several weeks, months, or even years [87]. For WEP and CIF

forecasting, both industry and academia have shown greater interest in short-term fore-

casting, particularly day-ahead forecasting, as it provides timely signals for operational

planning [22], improves market responsiveness [21], and supports real-time decision

making [45].

The field of MTS forecasting has been under study for decades, leading to the de-

velopment of various methods to tackle its inherent challenges. This section provides a

review of existing MTS forecasting methods, broadly categorizing them into three groups:

traditional statistical methods, classical machine learning, and modern deep learning.

The review initiates with an exploration of statistical methods, shifts focus to machine

learning methods, and concludes by delving into deep learning methods.

2.2.1 Traditional Statistical Methods

Statistical models (as defined in Section 2.1.2.1), including Autoregressive (AR) and

ARIMA [54], are commonly employed for univariate time series forecasting. ARIMA is a

composite model that incorporates AR and Moving Average (MA) components, suitable

for modeling stationary time series [88]. ARIMA models operate on the assumption that

time series exhibit a linear relationship with past observations and include white noise.

The Box-Jenkins method contributed to the further development of ARIMA by employing

model identification, parameter estimation, and statistical model-checking methods to

assist in determining the optimal model orders [88]. Previous studies [89–92] contribute

to univariate time series forecasting based on ARIMA methods, though they often face

challenges in effectively dealing with the high non-linearity present in time series data,

and frequently depend on assumptions related to stationarity. Vector Auto Regression

(VAR) [93–95] is designed to extend the model to MTS forecasting. In VAR, each variable

in the system is modeled as a linear function of its past values and the past values of all

other variables, allowing the model to capture interdependencies across multiple time
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series [96]. However, VAR assumes linear relationships and stationarity, which can limit

its effectiveness in capturing complex or nonlinear dynamics in MTS forecasting.

2.2.2 Classical Machine Learning

In the MTS forecasting context, machine learning methods (as defined in Section 2.1.2.2)

leverage input data, including past observations and variables, to uncover temporal

dependencies without requiring explicit knowledge of the time series components. These

methods have gained more attention in recent decades, supplanting classical statistical

methods.

As a supervised learning method, linear regression-based machine learning models,

including LR [97], and ridge regression [98], are commonly applied for MTS forecasting.

The basic principle of a linear model is to capture relationships between variables in a

linear manner, limiting their capacity to achieve good performance in the presence of

non-linear dependencies. They may struggle with intricate temporal patterns, abrupt

changes, and a lack of built-in memory for capturing dependencies in MTS data over

time.

As an unsupervised learning method, K-Nearest Neighbors (KNN) has been used in

earlier research [99–101] to predict time series based on the proximity of the input series

to its nearest neighbors. KNN is a non-parametric and interpretable method that does not

require assumptions about the data distribution, and it generally handles seasonal pat-

terns well [102]. However, KNN struggles with capturing global trends, often requiring

detrending techniques due to its lack of a mechanism for modeling long-term progression,

and its forecast accuracy is highly sensitive to the selection of input variables [102].

Additionally, SVR [103, 104] relies on the principle of structured risk minimization,

aiming to minimize an upper bound of the generalization error instead of finding em-

pirical errors. Selecting features for predictions in these studies demands significant

effort and is a time-consuming process [105]. Moreover, these methods may struggle

with high-dimensional data and can become computationally expensive, especially as

the dataset size increases.

While classical machine learning methods have shown promising performance in

various forecasting tasks due to their simplicity, interpretability, and effectiveness in

problems with a limited number of variables, they also come with notable limitations.

These include a reliance on manual feature engineering, limited ability to capture

long-range temporal dependencies, and challenges in modeling complex multivariate

dependencies within MTS data.
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2.2.3 Modern Deep Learning

Deep learning methods (as defined in Section 2.1.2.3) have emerged as a powerful alter-

native, addressing many of the shortcomings of traditional ML methods, particularly

in modeling long-term dependencies and complex relationships on large-scale datasets

[106, 107]. Deep learning offers a range of models specifically designed for MTS fore-

casting, each with distinct strengths and limitations. The exploration of diverse neural

network architectures, both in isolation and in combination, characterizes the ongoing

efforts in MTS forecasting research. This diversity reflects the adaptability of these

models to address the complexities inherent in capturing temporal dependencies in the

MTS data. In the following, key models widely used for MTS forecasting are discussed,

including RNNs, LSTMs, CNNs, Transformer variants, and their hybrid models.

RNNs incorporate memory mechanisms to store temporal information present in time

series data [108]. LSTMs, a specialized type of RNN, extend this capability by effectively

retaining long-term memory, allowing them to learn patterns from extended input

sequences [109]. CNNs employ convolutional operations specifically designed to capture

local temporal patterns within MTS data [110]. Transformers, with their attention

mechanism capable of modeling long-range temporal dependencies and focusing on the

most relevant time steps [111, 112], have been widely applied across diverse tasks,

including natural language processing [113, 114], image classification [115, 116], and

various time series applications such as classification [117, 118], anomaly detection [119,

120], and forecasting [121, 122]. Each of these models has distinct architectural strengths

and is capable of achieving superior forecasting performance depending on the specific

characteristics and domain knowledge associated with the data.

RNNs have been widely utilized for modeling temporal dependencies in MTS fore-

casting [123, 124]. A study [125] introduces a novel short-term load forecasting system

based on MTS with an RNN model. The MTS-RNN model is designed to generate time

series datasets encompassing short-term, cycle, long short-term, and cross-long short-

term series. This model provides a more comprehensive set of time series information,

facilitating accurate load forecasting by enabling the model to capture both continuous

and discrete sequence information. DeepAR, as proposed by [126], utilizes an LSTM-

based structure and incorporates ancestral sampling for obtaining joint samples. This

design enables DeepAR to flexibly accommodate various likelihood models, specifically

tailored for different data types. The model showcases proficiency in producing cali-

brated probabilistic forecasts, effectively capturing intricate patterns like seasonality,

and demonstrating adaptability to evolving uncertainty over time.
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Long- and Short-Term Time-Series Network (LSTNet) [127] integrates the advan-

tages of CNN and RNN to effectively capture both short-term and long-term patterns in

MTS forecasting. The convolutional component of LSTNet is specifically engineered to

extract short-term patterns along the time dimension and identify local dependencies

between variables. Meanwhile, the recurrent component, encompassing recurrent and

recurrent-skip layers, is tasked with capturing intricate long-term dependencies and

very long-term dependence patterns within the time series data. Temporal Convolu-

tional Networks [128, 129] process MTS data as sequential vectors, leveraging CNNs for

temporal modeling while employing causal convolutions and sliding kernels to capture

dependencies and preserve causality. Study [130] proposes a novel data-driven method

for MTS forecasting using LSTM and temporal attention mechanisms. This method

employs an LSTM decoder to discern patterns in historical data, facilitating the propa-

gation of available future information in both forward and backward directions. These

deep forecasting models focus on temporal dependency modeling but often overlook other

critical dependencies.

Proposed as a variant based on the transformer architecture, Informer [121] is

specifically designed for longer time series forecasting. It integrates learnable temporal

embeddings, probabilistic attention, and self-attention distilling operations, resulting

in a significant reduction in computational complexity. Pyraformer [131] designs a hi-

erarchical pyramidal attention module with a binary tree structure, facilitating the

capture of temporal dependencies. These methods significantly improve temporal depen-

dency extraction by enhancing the ability of the model to capture long-range sequential

patterns while reducing computational overhead. These studies adopt pointwise input

sequences to model temporal dependencies in MTS forecasting. However, a point-wise

input alone provides limited information [132]. This method limits the ability to cap-

ture fine-grained local patterns, overlooks short-term fluctuations, and fails to preserve

contextual continuity across adjacent time steps [132].

As discussed in Section 1.1, an MTS, often consisting of multiple interrelated time se-

ries, typically exhibits LTD (e.g., short-term temporal dynamics within each series), CVD

(e.g., interactions among variables), and MFI (e.g., complex frequency characteristics).

In recent years, the MTS forecasting methods have increasingly focused on capturing

these intricate dependencies and patterns to enhance prediction accuracy. The following

section reviews current studies capturing these types of information and highlights key

research gaps that remain. Additionally, as interpretability is considered crucial for

understanding and validating deep learning models, this section finishes with a review
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of methods for enhancing the interpretability of deep learning techniques in the MTS

context.

2.2.3.1 Deep Learning for Capturing Local-Temporal Dependencies

LTD refers to the dependencies and relationships within a short time frame or window.

It involves understanding how variables interact within short periods and the temporal

patterns in their adjacent areas. A promising method for overcoming the limitations

in capturing local-temporal patterns involves incorporating subseries-level patches to

effectively model dependencies across time steps. For this purpose, time series data is

transformed into two-dimensional (2D) vectors for model inputs.

PatchTST [122] enhances MTS forecasting by incorporating patching to capture local

semantic information and improve computational efficiency, while leveraging attention

mechanisms to model LTD within individual univariate time series. Crossformer [132]

introduces dimension-segment-wise embedding to segment input series and a two-stage

attention (TSA) layer to effectively capture both LTD and CVD in MTS forecasting.

DSformer [133] employs a double sampling block to extract global patterns via down-

sampling and local details via piecewise sampling, while a temporal variable attention

block captures LTD and CVD through a parallel structure. TimesNet [134] transforms

one-dimensional (1D) time series into 2D tensors to capture intraperiod and interpe-

riod variations, leveraging a parameter-efficient inception block instead of attention

mechanisms. eGRU [135] introduces a time series segmentation method that partitions

input sequences into segments of multiple time steps, enabling the model to learn LTD

at a subseries level while reducing input length and mitigating gradient issues during

training. TimeXer [136] captures local information by splitting the endogenous time

series into non-overlapping patches, embedding each as a temporal token, and apply-

ing self-attention over these tokens to model dependencies across short-term temporal

segments. iTransformer [86] treats each variate in an MTS as a single token, resem-

bling an extreme case of patch-based modeling. This design enables attention to capture

cross-variable dependencies through learnable embeddings and temporal dependencies

via position-wise feed-forward neural networks. WPMixer [137] first decomposes each

input time series into multi-resolution wavelet coefficient sequences, then segments each

univariate coefficient series into overlapping patches with fixed length, embeds them

into a shared latent space, and processes them with a patch mixer to learn localized

patterns within each frequency band.

Despite these advances, existing patch/segment-based methods for extracting local-
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temporal information using fixed-length, non-overlapping segmentation strategies still

face the following two issues: inter-segment dependency misalignment and intra-segment

information loss. The first issue arises when fixed segmentation disrupts correlations

between segments, leading to ineffective capture of local-temporal dependencies. The

second involves two sub-challenges: local pattern capture deficiency, where fixed seg-

mentation fails to model fine-grained patterns within a segment, and cross-segment

dependency loss, where dependencies spanning segment boundaries are not effectively

captured.

2.2.3.2 Deep Learning for Capturing Cross-Variable Dependencies

While most studies prioritize temporal dependencies, they often overlook critical in-

teractions among variables. Different variables in MTS forecasting often interact with

each other, revealing interlinked dynamics that influence the target series. Recogniz-

ing this, a subset of methods has specifically emphasized modeling CVD. Crossformer

[132] captures CVD using a TSA mechanism. Specifically, after modeling intra-variable

temporal dependencies, it applies a cross-dimension attention stage using a router mech-

anism to effectively aggregate and redistribute information among variables, enabling

the model to explicitly learn inter-variable relationships. DSformer [133] introduces

a Temporal Variable Attention block to capture CVD. This block includes a dedicated

variable attention path that models dependencies across variables by applying multi-

head self-attention along the variable axis, allowing the model to extract inter-variable

correlations in parallel with temporal features. TSP [138] indirectly captures CVD using

a channel-mixing MLP, where each channel corresponds to a variable. This mixing oper-

ation enables the model to learn interactions between variables without using attention,

relying on fully connected layers to blend features across the variable axis. Although

these models attempt to incorporate CVD, their reliance on structural modifications,

such as token rearrangement or channel mixing, rather than explicitly modeling dynamic

variable interactions, may introduce irrelevant or weak correlations. iTransformer [139]

avoids component-level modifications by inverting the input dimension to construct

variate tokens and apply attention for capturing static multivariate correlations.

The discussed methods may struggle to distinguish between meaningful depen-

dencies and coincidental patterns, especially in datasets with high-dimensional and

non-stationary input variables [140]. Additionally, they only capture fixed pairwise cor-

relations between variables and fail to account for how dependencies dynamically evolve

over time or vary across different frequency components.
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2.2.3.3 Deep Learning for Capturing Multi-Frequency Information

MTS data inherently exhibit multi-frequency variation patterns, encompassing both high-

frequency fluctuations and low-frequency trends. Some models incorporate decomposition

mechanisms to enhance time-frequency modeling: Autoformer [141] leverages auto-

correlation and trend-seasonal decomposition using the Fourier transform for extracting

periodic components; Non-stationary Transformer (NonStaFormer) [142] introduces

dynamic normalization to stabilize non-stationary series; FEDformer [143] employs

wavelet-based decomposition to capture both local and global frequency patterns; and

a study [144] reconsiders the Fourier transform from a basis functions perspective

to extract explicit time-frequency features and address issues related to inconsistent

starting cycles and series lengths.

The methods discussed emphasize long-term MTS forecasting by leveraging fre-

quency information primarily associated with seasonal trends and periodic components.

However, this type of decomposition differs from the MFI essential in short-term MTS

forecasting, where both rapidly changing and gradually evolving frequency components

play a more prominent role in capturing dynamic system behavior. A key exception to

typical approaches to MFI in time-series forecasts is the study in [145], which employed

continuous wavelet transform (CWT) to generate scalograms that effectively capture

LTD and MFI through an attention mechanism, thereby enhancing forecasting accuracy.

However, the use of a single wavelet function limits the ability of that model to capture

a wealth of wavelet-specific MFI present in the data. In addition, current methods do

not consider CVD and MFI simultaneously and thus fail to model the frequency-aware

inter-variable relationships.

2.2.3.4 Interpretability of Deep Learning Models

As deep learning systems are increasingly used to support high-stakes decision-making,

it is essential that users can appropriately assess and trust the outputs of these models.

Interpretability is a key property in this context, referring to the ability of users to

understand and reason about the model output [146]. There is relatively limited research

on model interpretability in MTS forecasting, although a few studies have proposed

methods to enhance interpretability in this domain.

IMV-LSTM [147] improves interpretability by maintaining variable-specific hidden

states and applying a mixture attention mechanism to assess the contribution of each

variable over time. Temporal Fusion Transformer [148] offers interpretability through
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attention and gating but relies on a complex modular design and provides only aggre-

gated insights without fine-grained attribution. SCNN [149] provides interpretability

by decomposing MTS into structured components such as trends, seasonality, and co-

evolving signals, and modeling them independently, but it lacks mechanisms to visualize

time- and variable-specific contributions within those components. BasisFormer [150]

introduces a learnable basis function framework that represents time series as combina-

tions of interpretable temporal bases, using cross-attention to quantify similarity, but

its interpretability is limited in granularity and lacks the ability to reveal fine-scale

interactions across time and variables. Series Saliency [151] transforms MTS into 2D

series images and uses a learnable mask within a mixup strategy to generate visually

intuitive saliency maps, but as a model-agnostic method, it remains decoupled from

forecasting objectives and lacks alignment with internal model behavior. Evaluation

studies [152–154] examine methods like SHAP and LIME but reveal common limitations,

namely, their failure to preserve temporal consistency and capture causal relationships,

making their reliability in time-series settings questionable. Despite diverse designs,

the discussed methods lack fine-grained, time- and variable-specific attribution that is

aligned with the internal behavior of the model.

Among gradient-based methods, MTEX-CNN [155] demonstrates a relevant method.

It employs a two-stage CNN architecture and applies Grad-CAM to generate saliency

maps that reveal both variable-level and time-level contributions. This dual explanation

method enables localized and interpretable attribution in both variable and temporal

domains.

2.2.4 Discussion

Traditional statistical models rely heavily on assumptions of linearity and stationar-

ity, significantly limiting their effectiveness in capturing complex, nonlinear dynamics

within MTS forecasting. Classical machine learning methods partially overcome these

constraints through greater modeling flexibility, interpretability, and effectiveness in

settings with fewer variables. However, classical machine learning methods still require

manual feature engineering, struggle to capture long-range temporal dependencies, and

face difficulties in modeling complex multivariate interactions inherent in MTS data. In

response to these limitations, deep learning methods have emerged as powerful alterna-

tives, demonstrating superior capabilities in automatically learning hierarchical data

representations, effectively modeling long-term dependencies, and handling large-scale

datasets with intricate, nonlinear relationships. Despite recent advancements, current
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deep learning-based MTS forecasting methods still face key limitations.

As seen in recent deep learning-based MTS forecasting methods, such as Informer

[121], Pyraformer [131], and LSTNet [127], there is often a reliance on point-wise inputs,

which constrains their ability to model LTD and maintain continuity across time steps.

Patch- and segment-based models like PatchTST [122] and TimesNet [134] attempt

to overcome this through subseries-level representations, but their use of fixed-length,

non-overlapping segments introduces challenges such as inter-segment dependency

misalignment and intra-segment information loss. Additionally, many deep learning

MTS forecasting models focus primarily on capturing temporal dependencies while

neglecting dynamic cross-variable interactions. Efforts to capture CVD, such as TSA

from Crossformer [132] or variable attention from DSformer [133], often depend on static

architectural strategies like token rearrangement or channel mixing, which may not

effectively represent evolving inter-variable relationships. Additionally, time-frequency

decomposition models predominantly focus on long-term trends and global periodicity,

overlooking frequency-aware variable dependencies, where a failure to consider CVD and

MFI simultaneously may impact performance in short-term MTS forecasting settings.

To date, no existing method jointly and explicitly models local and global temporal

dependencies, cross-variable interactions, and multi-frequency information in an inte-

grated framework. Moreover, interpretability remains an underexplored aspect, with

most methods lacking mechanisms to explain which temporal segments and variables

influence the prediction, thereby limiting model transparency and trust.
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Chapter 3

Experimental Comparison of Two
Main Paradigms for Average Carbon
Intensity Forecasting

The review of carbon intensity factor (CIF) forecasting methods in Section 2.1.1

found that there were two key high-level paradigms for CIF forecasting: the source-

disaggregated approach (SDA), where forecasting is performed at the individual gen-

erator or fuel source level and then aggregated into an overall CIF estimate, and the

source-aggregated approach (SAA), where forecasting is conducted solely at the fully

aggregated grid level. This chapter aims to provide the first comparative analysis of

these two approaches, identifying the strengths and trade-offs of each approach under

diverse grid conditions. Additionally, the findings here provide context for the selection of

the methodological approach adopted in subsequent chapters and for understanding how

varying grid conditions impact the performance of deep-learning-based MTS forecasting.

The structure of this chapter is as follows: Section 3.1 introduces the motivation,

research problems, objectives, and contributions of this chapter. Section 3.2 provides

details of the two approaches. The experiments, along with discussions, are given in

Section 3.3. Last, the summary is presented in Section 3.4.

3.1 Motivation

As discussed in Section 2.1.1, existing works on forecasting the CIF of the grid can be

divided into two categories: SDA and SAA. The benefit of the SDA is greater clarity into

the contribution of individual sources to overall system CIF, while the SAA (particularly
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when fused with machine learning across large datasets) is well placed to capture complex

system-level dynamics (e.g., non-linear relationships among environmental, market, and

load conditions). There have been no studies actively comparing the performance of

SDA and SAA approaches using real-world energy data, nor any exploration of how

renewable penetration levels and generation types impact the relative performance of

each approach. The upshot is that there is little guidance for practitioners looking to

understand when and where to adopt each approach and the relative benefits of each.

There has also been little research into whether and how wholesale price and grid

demand impact relative performance and model behavior.

The key contribution of this chapter is to provide the first direct comparison of

SDA and SAA across distinct real-world operational contexts, exploring if and how

performance and value change for each approach. The intent is to provide initial evidence-

based guidance on model framework selection to those looking to deliver practical carbon

intensity forecasts. This will be achieved by evaluating a widely used contemporary

machine learning model, LSTM1, under both SDA and SAA settings across two distinctly

contrasting deployment contexts, one characterized by high variability from renewable

energy penetration and the other by relatively stable fossil fuel energy generation. The

results will analyze the key factors that differentiate the performance of SDA and SAA

in these scenarios.

3.2 Methodology

In this section, an overview of the LSTM model is first provided, including its definition

and application. Subsequently, a detailed description of the implementation of both SAA

and SDA is presented.

3.2.1 LSTM Model

When designing the LSTM model, careful consideration must be given to various hyper-

parameters, such as the number of neurons, the number of layers, and the activation

function, as they significantly impact its performance. Determining the optimal values

for these hyperparameters is essential to achieve the desired performance and prevent

1Note that, as discussed earlier 2.2.3, LSTM has proven effective in capturing long-term dependencies
and patterns within time-series data [73, 109], making it an appropriate baseline model for comparing
SDA and SAA frameworks. The work presented in Chapters 4 and 5 focuses on developing enhanced deep
learning models that extend beyond LSTM.
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issues such as overfitting or under-fitting [156]. Since overfitting problems, which result

in lower performance on unseen data, can arise from a more complex neural network

than necessary [157]. To address this, a grid search was conducted during the design

phase of the LSTM model to identify the best hyperparameter configurations.

LSTM, being a SOTA model, is well-suited to process large-scale datasets and can

be effectively utilized in multivariate time series forecasting applications. The neural

networks within LSTM exhibit the capability to capture complex patterns and effectively

filter out noise. The LSTM model and hybrid models have been leveraged and proven

to be more effective compared to other deep learning models for CIF forecasting in

recent studies [26, 47, 49–51]. As a result, LSTM was utilized in the SAA and SDA

implementations for average CIF forecasting.

The architecture of the proposed LSTM model is presented in Figure 3.1. Each input

feature is divided into 24-hour sliding windows with a 1-hour moving window. These

sliding windows with input features are then fed as input to the LSTM model for training.

The following 24-hour label windows from the training set serve as the supervised labels

for the model. The hidden layers of the LSTM are designed to minimize the difference

between the supervised labels and the predicted labels generated by the output layers.

This learning process involves capturing and understanding the temporal dependencies

within the input data, enabling the model to make accurate predictions based on the

given inputs.

3.2.2 The Implementation of SAA

The SAA, as a centralized structure, is to leverage historical and forecast data as the

input variables to predict the average CIF.

Methodologies similar to those used in other LSTM studies within the CIF domain

are adopted. The objective in this chapter is not to outperform existing methods, but

rather to examine the impact of the SDA and SAA frameworks on performance. There-

fore, the feature formation aligns with established practices in the literature. As shown

in Figure 3.2, a range of input features was utilized, including grid electricity generation

and CIF data (historical electricity generation, average CIF), as well as grid opera-

tions and market data (historical wholesale electricity price, grid load demand, and

forecast grid load demand). Historical and forecast weather variables, including wind

speed, solar radiation, and precipitation, were also integrated as input features in the

proposed model. These weather variables were collected at the specific geographical
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Figure 3.1: The proposed LSTM architecture.

locations corresponding to each generator in order to capture the localized environmental

conditions.

By incorporating these input features, a comprehensive range of information was

leveraged to improve the accuracy and robustness of the predictions. The historical

average CIF and each type of energy production data provided insights into the historical

patterns of carbon intensity, and past performance and trends of each source type. The

grid operations and market data offered valuable information regarding the behavior of

the electricity system and market dynamics. Furthermore, integrating weather variables

into the proposed model allowed us to consider the impact of weather conditions on

renewable energy generation as well as current and future electricity demand.

The 24-hour historical and forecast features are collected on a daily basis. To predict

the average CIF for the (d̂+1)th day, the model involves combining the 24-hour historical

features from the d̂th day with the forecast features collected for the (d̂+1)th day. This
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Figure 3.2: The diagram of SDA and SAA for average CIF prediction.

combination of historical and forecast data enables us to capture valuable information

from the past day and leverage the insights provided by the forecast for the upcoming

day. By repeating this process for 24-hour samples in the test set, a series of forecasts for

day-ahead hourly average CIF is obtained.

3.2.3 The Implementation of SDA

In terms of the SDA, LSTM is employed to forecast each type of electricity generation for

the following day at hourly intervals. Day-ahead average CIF prediction is calculated

by aggregating each type of electricity generation forecast based on the corresponding

emission factors, utilizing Equation (2.1). The architecture of this approach is shown

in Figure 3.2. The correlation analysis and more advanced LSTM model are employed

to enhance the prediction accuracy of the SDA, which distinguishes the method from

the original SDA proposed in [26]. Due to the varying impacts of various variables on
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the prediction of each type of renewable energy generation, it is crucial to carefully

consider their individual influences. For instance, wind speed directly affects the output

and effectiveness of wind turbines, making it a crucial factor in predicting wind power

generation accurately [158]. The correlation analysis allows us to identify and understand

the relationships between each variable and each type of renewable energy generation. By

assessing the strength of these correlations, the most influential variables for prediction

can be selected. The Pearson correlation coefficient (PCC) [73] is applied to measure

the correlations between available variables and different types of renewable energy

generation:

(3.1) ρPV ,REG = cov(PV ,REG)
σPV ·σREG

given a pair of variable PV and renewable energy generation REG, cov(PV ,REG) is

the covariance between PV and REG; σPV and σREG are the standard deviations of

variable PV and renewable energy generation REG.

Preliminary correlation analysis between non-renewable energy generation and

weather variables revealed weak relationships. Therefore, this work focus solely on

historical wholesale electricity prices, historical grid load demand, and forecast grid

load demand as input variables for predicting non-renewable energy generation in the

model. The PCC between the renewable energy generation and possible input variables

is shown in Figure 3.3. The details and abbreviations of the input variables can be found

in Section 3.3.1. In the range of PCC between 0 and 1, a PCC greater than 0.2 is generally

interpreted as indicating a low to high positive correlation, whereas a value lower than

0.2 suggests a weak positive correlation [159]. Only variables associated with types of

renewable energy generation displaying a PCC greater than 0.2 or lower than -0.2 are

considered suitable for integration into the modeling. It is noticed that load demand

and wholesale electricity price have been identified as crucial features to predict the

hydro energy generation in NSW. This can be attributed to the fact that hydro energy

generation integrated with storage, such as pumped hydro, can be controlled by humans

based on the load demand and wholesale electricity price signals [160].

It is worth noting that there is significant non-linearity between the variables in

this chapter. To address this, a Spearman rank correlation (SRC) [161] analysis was

also conducted, capturing both linear and non-linear monotonic relationships. Notably,

the SRC results closely aligned with the PCC findings, indicating that the relationships

between input variables and renewable energy generation are predominantly monotonic.
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Figure 3.3: PCC between input features and renewable energy generation in NSW and
SA.

This suggests that, although some non-linearities exist, they do not significantly impact

the selection of key features for modeling.

3.3 Experiment

The data sets used in this chapter are first described in Section 3.3.1. Then, the ex-

perimental setup is presented in Section 3.3.2. Lastly, the experimental results and

discussion are provided in Sections 3.3.3 and 3.3.4.

3.3.1 Data Sets

This section provides an overview of the data sets used in this chapter.

3.3.1.1 Grid Electricity Generation Data

In order to evaluate the performance of each approach in different operational contexts,

electricity supply is examined in two Australian states with sharply distinct generation

mixes: New South Wales (NSW) and South Australia (SA). The proportion of electricity

generation by each type of source in both areas from 2020 to 2021 is presented in

Figure 3.4. As noticed, the source and proportion of each type of renewable or non-

renewable energy production are profoundly different for those two areas. NSW is a state

in the region of south-eastern Australia that largely relies on non-renewable energy

sources, including coal, gas combined-cycle gas turbines (CCGT), and gas open-cycle gas

turbines (OCGT), which make up about 77.2% of total generation. Renewable energy
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Figure 3.4: Different types of sources for electricity generation in NSW and SA from 2020
to 2021.

sources in NSW consist of wind, solar, and hydro. In contrast, SA, located in the south-

central region of Australia, depends heavily on renewable energy generation, including

wind and solar energy generation, which account for about 64.8% of total generation.

The non-renewable energy generation in SA comprises gas (reciprocating), gas (stream),

gas CCGT, and gas OCGT technologies.

Electricity generation data were collected from the Open Platform for National

Electricity Market (OpenNEM) platform [2]. The data spanned a period of 2 years and

were collected at 1-hour intervals.

3.3.1.2 Weather Variable Data

This chapter collected historical weather variable data from the NASA POWER plat-

form [162] and obtained forecast weather data from AccuWeather2. These datasets were

collected at daily intervals with hourly resolution. The weather variable data in NASA

POWER is provided on a global grid with 2 to 50 meters spatial resolutions based upon

NASA satellite observations. Weather information at a specific location can be retrieved

based on latitude and longitude input by users. Given that the openNEM platform [2]

provides public access to the latitude and longitude data of all generators in Australia, it

2AccuWeather for business, 2021. Available online: https://www.accuweather.com/ (accessed on 01
January 2023).

36



3.3. EXPERIMENT

becomes feasible to acquire weather variables corresponding to the specific locations of

each renewable generator across the country.

Weather variables consist of wind speed at 10 meters and 50 meters distance range

(m/s), wind direction at 10 meters and 50 meters distance range (degree), pressure (kPa),

relative humidity (%), precipitation (mm/hour), temperature (°C), wet bulb temperature

(°C), sky surface shortwave downward irradiance (Wh/m2), sky surface ultra-violate (UV)

index (W/m2), photosynthetic active radiation (PAR) index (nm), insolation clearness

index (degree) and dew point (°C).

3.3.1.3 Grid Load Demand Data

The relationship between load demand and carbon intensity is influenced by the com-

position of the energy mix for electricity generation. When a substantial proportion

of electricity is sourced from renewable energy with low or zero carbon emissions, the

carbon intensity tends to remain relatively low even during times of high demand. Con-

versely, if the energy mix relies predominantly on fossil fuel-based power plants, the

carbon intensity is higher, and an increase in load demand leads to a more significant

rise in carbon emissions. Hence, incorporating load demand as an input variable in

CIF forecasting is crucial. By considering the relationship between load demand and

carbon intensity, the forecasting models can account for the dynamic nature of electricity

consumption and its impact on carbon emissions. Both the history and forecast of hourly

load demand data in Australia are provided on the Australian Energy Market Operator

(AEMO)3 platform.

3.3.1.4 Wholesale Electricity Price Data

The operational decision-making of generator owners and operators in Australia is

significantly influenced by the wholesale electricity price. It is observed that many

generators are brought online only when the market conditions are suitably beneficial,

emphasizing the importance of the wholesale electricity price in shaping their operational

choices. The AEMO provides reliable historical data on hourly spot prices for electricity.

3Australian Energy Market Operator, 2009. Available online: https://www.aemo.com.au/ (accessed on
01 January 2023).
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3.3.1.5 Data Splitting

The data set comprises hourly records for a duration of two years, commencing from

January 2, 2020, until December 31, 2021, for each geographical region. The first year

of data (2/1/2020 to 1/1/2021, inclusive) is used to train the SDA and SAA models, and

the performance of these models is then tested on the following year of data (2/1/2021 to

31/12/2021, inclusive).

3.3.2 Experimental Setup

3.3.2.1 Evaluation Metric

MAPE defined by Equation (3.2) is a common metric to evaluate the accuracy of time

series forecasting [87]. It is used to measure the accuracy of a forecasting model by

calculating the average percentage difference between the predicted values and the

actual values.

(3.2) MAPE = 100
n

n∑
i=1

|yi − ŷi|
|yi|

where n is the number of observations, yi and ŷi are the actual and forecast values at

sample i.
MAE is a widely used performance metric in machine learning and statistical anal-

ysis, quantifying the average deviation between predicted and actual data [163]. It is

calculated as the average of the absolute differences between predicted and actual val-

ues, as shown in Equation (3.3). Certain energy sources, such as solar and gas-power

production, often yield zero values. Consequently, using MAPE as an evaluation metric is

impractical in these cases, as it does not produce meaningful results. Therefore, MAE is

a more suitable alternative for evaluating the forecasting performance of each individual

energy type in the SDA.

(3.3) MAE = 1
n

n∑
i=1

|yi − ŷi|

The standard deviation is utilized to assess the statistical significance of the results,

enabling us to derive meaningful insights.

(3.4) σ=
√

1
n

n∑
i=1

(xi −µ)2
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where xi is the ith observation, and µ is the mean of all the observations.

3.3.2.2 LSTM Model Setup

The LSTM model was applied separately to forecast 1) the individual energy type

production for the SDA and 2) the average CIF for the SAA, with encoding and decoding

structure. The input features were discussed in Section 3.3.1.

The hyperparameters for the model were selected through a grid-search over the

parameters shown in Table 3.1. The models were built with two LSTM layers (200 nodes

each) and one dense layer for both methods, using a batch size of 64. The dropout function

was applied to avoid overfitting and settled at 0.5. For the SDA, the learning rate and

epoch were experimentally determined to be 0.0004 and 300-600, depending on the

different sources. For the SAA, the learning rate and number of epochs were empirically

set to 0.0004 and 800, respectively.

The "EarlyStopping" method was used to terminate training once the performance of

model stopped continually improving. The RMSE loss function was applied to evaluate

the training loss. The "Adam" optimization function and the "ReLu" activation function

were considered in the model building. The "MinMaxScaler" normalization function

was applied as both a pre-processing and post-processing step to reduce variance and

maintain the stability of the features. Further, the sliding-window technique was used

with prior 24h time steps to predict the next 24h time steps, as shown in Figure 3.1.

Table 3.1: Details of hyperparameters for the LSTM model optimized by grid-search.

Hyperparameters Ranges

Epochs 200, 300, 400, 500, 600, 700, 800, 900
Batch Size 32, 64, 128
Learning Rate 0.0002, 0.0004, 0.0006
Number of Layers 1, 2, 3, 4, 5
Units per Layer 150, 200, 250
Dropout Rate 0.4, 0.5, 0.6
Activation relu, tanh
Optimizer Adam, RMSprop
Loss Function RMSE, MAE
Normalization MinMaxScaler, StandardScaler
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3.3.3 Experimental Results

To evaluate the performance of both approaches, this section first compared their general

performance in NSW and SA. Next, the performance of both approaches was assessed

under different levels of stochastic renewable energy generation compared to more pre-

dictable base-load (fossil-fueled) energy generation in those two regions. This evaluation

reflects real-world conditions where renewable energy sources are increasingly inte-

grated into the grid. Furthermore, both approaches were compared under controlled

and curtailed generation scenarios regulated by the grid, which tests the adaptability of

the algorithms to regulatory constraints. Lastly, the generation prediction performance

of the SDA was evaluated to identify gaps in its forecasting capabilities, highlighting

areas for improvement in predictive accuracy essential for grid management and energy

planning.

3.3.3.1 Overall Performance

An overall comparison experiment was conducted to examine the general performance of

both approaches in NSW and SA. The MAPE and MAE of average CIF forecasting in

NSW and SA using each approach are displayed in Table 3.2. Both proposed approaches

have shown higher accuracy in NSW. As illustrated in Figure 3.4, the proportion of

renewable energy generation in SA surpasses that of NSW by a significant margin. The

observed discrepancy indicates that in scenarios with a higher proportion of renewable

energy generation, the errors of both approaches are prone to increase. This can be

attributed to the unpredictable and dynamic nature of renewable energy generation,

which is influenced by factors such as weather conditions, wholesale electricity prices,

and grid load demand. These variables significantly impact the individual production of

renewable sources, leading to their volatile and fluctuating behavior. In contrast, non-

renewable energy generation, such as coal, is more predictable because it is controlled by

humans generally, and the fluctuation of non-renewable energy generation is relatively

stable.

The four best cases where one approach outperforms the other in terms of accuracy

for a single day in both NSW and SA are shown in Figure 3.5. The blue, red, and orange

lines represent the actual CIF, the forecast from the SAA, and the forecast from the SDA,

respectively. It can be observed that the actual CIF in SA exhibits lower levels compared

with NSW. Upon analyzing the energy profiles and CIF patterns, it becomes evident

that the actual CIF pattern in NSW exhibits a higher degree of regularity compared to
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Table 3.2: The MAPE (%) and MAE (kg CO2-e/kWh) of average CIF forecasting in differ-
ent states using two approaches.

State MAPE MAE

SAA SDA SAA SDA

NSW 5.40 5.22 0.037 0.036
SA 26.71 27.76 0.049 0.050

that observed in SA. This heightened regularity translates to increased predictability in

the CIF forecasting, which results in both approaches achieving a better performance

in NSW. Regardless of which approach outperforms the other according to MAPE, it is

observed that in these cases, the forecasts from SDA track the trend of the actual carbon

intensity over time.

3.3.3.2 Analyzing Performance across Different Scenarios

It is helpful to uncover the scenarios that give rise to the superiority of one approach

over the other under real-world conditions.

The performance of each approach in relation to the range of magnitudes for the

features can vary. There is no definitive threshold or level at which one approach outper-

forms the other. Therefore, it is important to evaluate the performance of both approaches

across different ranges of feature magnitudes to examine which approach performs better

in a given context. A metric was defined as shown in Equation (3.5) to gain insights into

this difference.

(3.5) ∆Mi = MA i−MD i

where MA i and MD i denote the MAPE of SAA and SDA in predicting CIF at sample

i. The difference in MAPE between both approaches, denoted as ∆Mi, is calculated. If

∆Mi yields a negative value, it indicates that the SAA outperforms the SDA for sample

i. Conversely, a positive ∆Mi signifies that the SDA outperforms the SAA.

Both typical and atypical scenarios are analyzed to uncover and understand the

differences between the two approaches. Typical scenarios refer to the CIF forecasts of

both approaches under standard grid power conditions, while atypical scenarios involve

their forecasts during interventions.
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Figure 3.5: The four best cases where one approach outperforms the other in terms of
accuracy for a single day in two states.

Typical Scenarios The goal is to understand which feature differences lead to the

sharpest difference in performance between SDA and SAA. To achieve this, the time

periods with the most significant performance differences are first identified, and the

characteristics of the input features during those periods are then examined. Specifically,

the extreme cases were selected as the samples the corresponding ∆Mi of which are

among the largest or smallest 2.5% across all the samples. Within these extreme cases,

the average magnitudes of the corresponding features were calculated. To standardize

the results and ensure comparability, Min-Max normalization [164] was employed to

scale the values between 0 and 1, facilitating further analysis.

All features mentioned in Section 3.3.1 used by both approaches are analyzed, as
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shown in Figure 3.6. The yellow blocks highlight the distinct differences in feature

magnitudes between the two approaches. SDA is superior in NSW when wind and

hydro energy generation (and related weather predictors, e.g., wind speed and relative

humidity) are high. In contrast, the SAA is found to be more accurate when solar energy

generation (and related predictors, e.g., PAR and surface shortwave) are high. SDA is

superior in SA when solar energy generation is high. In contrast, SAA is found to be

more accurate when wind generation is high and also when overall load demand is high.

Furthermore, the proportion of renewable energy generation in the previously de-

fined extreme cases was examined, as shown in Figure 3.7. It is observed that in the

cases where the SAA outperforms the SDA in NSW, solar energy generation accounts

for 16.42% of the total generation, surpassing other renewable source types. In SA,

wind energy generation constitutes 76% of the total generation in the same scenario

as noticed in Figure 3.7 (b). In NSW, the SAA outperforms the SDA when solar power

is the primary source of renewable energy. In SA, the SAA performs better when wind

power is the dominant source of renewable energy. These findings are consistent with the

aforementioned empirical results and demonstrate that the SAA yields more accurate

predictions in the presence of dominant renewable energy generation. However, the per-

formance of SAA tends to decline compared to the SDA approach when niche renewable

energy generation types produce higher outputs than usual. For instance, situations with

elevated niche renewable energy generation, such as wind and hydro energy generation

in NSW, typically dominated by solar energy generation, and solar energy generation in

SA, traditionally reliant on wind power, can lead to a degradation in SAA performance.

The difference in the grid load demand between the two extreme cases in NSW is

negligible, as demonstrated in Figure 3.6 (a). This can be attributed to the marginal

difference in coal electricity production, which is the primary source type of energy

generation in NSW. However, wind energy holds the largest share of electricity supply

in SA. As noticed in Figure 3.6 (b), the proposed SAA exhibits better performance even

under higher load demands.

Based on the analysis, it is recommended to prioritize the use of SAA when the

dominant source of renewable energy generation is higher, and to use SDA more when

the non-dominant source is higher. For example, if a user is deciding between SAA and

SDA and expects more windy weather in a wind-dominant energy region in the coming

days, SAA is advised for CIF forecasting. Conversely, if an increase in solar radiation and

less wind are anticipated in the same region, SDA should be preferred for more accurate

forecasts.
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Figure 3.6: The normalized magnitude of each feature for the extreme cases.
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Figure 3.7: The penetration of each renewable energy generation for the extreme cases.

Atypical Scenarios While electricity generation from solar and wind is primarily

influenced by weather variables, it may also be influenced (though less typically) by hu-

man intervention (e.g., the decision to redirect renewable output to onsite storage during

periods of low wholesale price or to curtail generation during negative price events).

This motivates an evaluation of which approach is better suited for predicting CIF when

atypical scenarios like human intervention arise in renewable energy generation. These

scenarios, particularly human intervention, may include redirecting renewable outputs

to charge on-site battery systems or implementing generation curtailment during periods

of negative or low wholesale prices. Firstly, a filtering process was conducted to identify

highly correlated features for each type of renewable energy generation in both regions.

Secondly, the PCC was calculated between the types of renewable energy generation and

their corresponding selected features, specifically focusing on cases where one approach

significantly outperforms the other. Finally, the difference in PCC for each type of renew-

able energy generation between the two approaches provides insights into the differing

degrees of human interventions involved in each approach.

Most of the time, a small set of variables are highly predictive of the outputs of each

generator. As shown in Figure 3.8, based on the PCC, wind speed is unsurprisingly highly

correlated with wind generation; a set of solar irradiance and temperature variables

are highly correlated with solar generation; and load demand is relatively predictive of

hydro generation. However, to what extent does each framework rely on these strong
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correlations holding? To explore this, situations where SDA performs much worse or

much better than SAA in each state were examined, with a focus on how the average

PCC values for the key predictors of each generation type (all variables to the right of

the red dashed line in Figure 3.8) are related to the performance of each framework. It

is consistently the case that SDA performs worst when outputs are less well correlated

with the typical predictors of the outputs of each generator, as shown in Figure 3.9. This

likely reflects times when the output of one generation source is impacted by broader

grid dynamics. For instance, high wind conditions may become uncorrelated with wind

outputs if an excess supply of solar energy and low load demand significantly drive down

prices, prompting operators to redirect generation to onsite batteries or, in extreme cases,

curtail output. Without explicitly integrating variables associated with other generation

sources, the individual outputs from SDA are likely to falter in these instances, leading

to lower accuracy in CIF outputs. This is not an issue with SAA, which includes all

available input variables and can therefore better learn cross-generation relationships.

3.3.3.3 How to Improve the SDA

The performance of the SDA is determined by the result of each type of electricity gen-

eration prediction. Consequently, the error derived from renewable and non-renewable

energy generation forecasts in the SDA can be analyzed to assess the impact of each

category of electricity production forecasting on CIF forecasting. To compare the pre-

diction performance of both approaches, Equation (3.5) was employed to calculate ∆Mi
similarly. The extreme cases were chosen as samples based on the largest or smallest

2.5% of the corresponding ∆Mi values across all the samples. The MAPE values of the

renewable and non-renewable energy generation forecasts obtained using the SDA are

analyzed using the method described, and results depicted in Figure 3.10. The analysis

indicates that renewable energy generation forecasting presents a markedly greater

difference between the extreme cases of CIF forecasting performance in NSW when

compared with non-renewable energy generation forecasting. Conversely, a noticeable

difference between the extreme cases can be observed when evaluating non-renewable

energy generation predictions in SA. As noted in Figure 3.4, the NSW depends heavily

on non-renewable energy generation, while the SA relies more on renewable energy

generation. The results indicate that the SDA could be further developed through im-

proving the power generation prediction performance of the types that accounts for a

lower penetration in a specific area.

Moreover, this section analyzed the individual prediction impacts of different renew-
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Figure 3.8: The PCC between different types of renewable energy generation and their
relevant features based on all samples in NSW and SA.

able energy generation types in NSW and non-renewable energy generation types in SA

on CIF forecasting. The MAE of each type of renewable energy generation forecast in

NSW and non-renewable energy generation forecast in SA, as determined by the ranking

method used previously and the selection of 2.5% extreme cases, is presented in Fig-

ure 3.11. The substantial variation in solar energy generation forecasting performance

between the two extreme cases in NSW provides valuable insight into the potential

benefits of enhancing predictive accuracy for areas with low penetration of renewable

energy generation. Similarly, in SA, all forecasts of gas-power production, including gas

OCGT, gas CCGT, gas reciprocating, and gas steam, display a noticeable distinction in

this analysis, highlighting the potential for further improvement.

Forecasting energy generation with SDA is challenging due to periods of complete
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Figure 3.9: The PCC between different types of renewable energy generation and their
highly relevant features for the extreme cases in NSW and SA.

Figure 3.10: The MAPE (%) of renewable and non-renewable energy generation forecast-
ing for the extreme cases.
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Figure 3.11: The normalized MAE (kg CO2-e/kWh) of different types of energy generation
forecasting for the extreme cases.

inactivity, variable peaking output, and the infrequent activation of energy sources.

Forecasting solar power generation may be difficult during the day in cloudy conditions

where minimal (but non-zero) levels of irradiance are experienced. In addition, the limited

presence of non-renewable energy generation in the energy mix of SA leads to gas-related

energy generation being activated infrequently and primarily in response to price signals.

Gas energy generation in SA features a range of outputs, with some plants (e.g., gas

steam and gas CCGT) providing variable, responsive power for both base and peak loads,

while others (e.g., gas reciprocating engines and gas OCGT) operate intermittently during

peak demand. Accurately forecasting solar and gas power generation is challenging,

especially during periods of extremely low and consistent generation rates, along with

the infrequent activation of gas-peaking plants. These challenges contribute significantly

to sub-optimal energy generation forecasts. The SDA often encounters difficulties in

effectively training for electricity generation during daily operations, particularly in

scenarios with extremely low penetration levels of energy generation that operate at or

near zero values and inconsistent values, such as during periods of outage or ramping

up. Additionally, SDA would find it challenging to forecast intermittently peaking energy

generation, such as gas plants transitioning from inactive to high generation levels.
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3.3.4 Discussion

The comparison reveals that both approaches achieve comparable accuracy in forecasting

CIF, with overall comparable performance. Both approaches demonstrate significantly

enhanced performance in predicting CIF for NSW, characterized by fossil-fuel-dominated

regions, as compared to SA, with more stochastic renewable energy generation. The

SAA exhibits superior performance when the generation of dominant renewable energy

is higher, but its performance is reduced during periods of increased niche energy

generation types compared to the SDA. Renewable source types are projected to be the

primary sources for meeting electricity demand in the coming decades, with increased

penetration of dominant renewable energy generation. Furthermore, the comparative

results demonstrate the effectiveness of the SAA in cases renewable energy generation

is subject to atypical scenarios, such as human interventions and regular controls. It

is common for renewable energy generation to be controlled or curtailed under certain

circumstances to ensure engine safety and address negative or low wholesale price

scenarios. The SAA can account for the interrelationships between source types, resulting

in improved CIF forecasting performance. The SDA exhibits limitations in accurately

predicting consistent generation from certain source types, particularly those with

extremely low production magnitudes and steady values, as well as when deviations

from typical conditions occur, such as the activation of a peaking plant.

In light of the characteristics of both approaches, some recommendations for im-

provement are offered. Given the inability of the SDA to accurately predict consistent

generation from some source types, particularly those with extremely low production

magnitudes and consistent values, it is crucial to first employ an approach, such as

incorporating expert knowledge, to identify whether a source type is operational or

shut down before conducting generation prediction. This will enhance the prediction

accuracy for each source type and, thus the final CIF. Additionally, addressing "zero-

output" times can be achieved by incorporating basic heuristics, such as zeroing-out time

periods overnight for solar generation. Moreover, when predicting energy generation,

the integration of heuristics can be explored to account for human interventions or grid

curtailment scenarios.

In terms of SAA, the performance of the SAA appears to be weaker during periods

of atypical behavior, such as an increase in more niche generation types. To improve

performance during such atypical times, a more careful selection of training data that

balances fuel-mix types and operational scenarios may be beneficial. Improving the

model interpretability of the SAA can be achieved through several methods, such as
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sensitivity analysis and expert feedback. Enhancing the interpretability of the deep

learning model with SAA for CIF forecasting is examined in Chapter 5 and is outlined

in detail in Section 5.3.5. Including high-quality WEP forecasts potentially enhances

the accuracy of both approaches. Wholesale price forecasts have a significant influence

on the operation of non-baseload generation, as their operations are strongly guided by

market incentives. In addition, wholesale price forecasts offer valuable insights into the

impact of market incentives on CIF patterns in earlier times, enabling the forecast of

SAA to align with the anticipation of peak and off-peak periods in the CIF.

3.4 Summary

This chapter serves three main purposes: to provide practical guidance for researchers

selecting between SAA and SDA for CIF forecasting, to inform the selection of the CIF

forecasting framework to be used across the remainder of this thesis (as seen in Chapter

5), and to begin exploring how varying grid conditions impact the performance of deep-

learning-based MTS forecasting (which will continue in Chapters 4 and 5). Both SAA and

SDA were examined for day-ahead grid average CIF prediction. The SAA is structured

as a single aggregated forecast, whereas the SDA generates multiple disaggregated

forecasts that are then combined into an overall forecast using a predefined formula.

This chapter aims to identify under what conditions and for what reasons one approach

outperforms the other while also offering guidance for improving the approach that

exhibits weaknesses.

The comparison between the SAA and SDA forecasting methods shows that both

achieve similar accuracy in predicting CIF, performing well in fossil-fuel-heavy regions

like NSW, but with relatively poorer performance in the more varying renewable energy

conditions of SA. The SDA struggles to consistently predict outputs from sources with

very low or near-constant production levels. The SAA was shown to perform better

in conditions where typically large renewable contributors dominate the supply mix

(e.g., wind in SA). Perhaps as importantly, the SAA delivers superior performance when

renewable output becomes decoupled from typical environmental predictors, likely as a

result of curtailment or control responses to poor market conditions or safety constraints.

To enhance CIF forecasting accuracy with the SDA, it is recommended to validate the

operational status of energy sources before making predictions. Implementing simple

heuristics, such as disregarding solar power forecasts overnight, could improve accuracy.

Additionally, factoring in human interventions or grid curtailments may be beneficial. For
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the SAA, optimizing the training dataset to balance different fuel types and operational

conditions during unusual activity could improve performance.

Results across SDA and SAA suggest that the core LSTM model used in this chapter

may deliver sub-optimal performance, particularly in the presence of highly variable

(renewable-dominated) conditions. Therefore, it is essential to design more advanced deep

learning models for MTS forecasting under such highly variable grid conditions, which

will be addressed in the remainder of this thesis. Also, enhancing SAA interpretability

through improved model design and expert input could make the SAA more reliable (as

further enhanced and detailed in Chapter 5).
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Chapter 4

A Local-Temporal Convolutional
Transformer for Wholesale Electricity
Price Forecasting

As discussed in Sections 2.2.3.1 and 2.1.2.4, capturing local-temporal dependencies

(LTD) remains a challenge in multivariate time series (MTS) forecasting, which is

essential for accurate wholesale electricity price (WEP) forecasting. This chapter focuses

on addressing the challenge of capturing LTD, while also integrating global-temporal

dependencies (GTD) and incorporating cross-variable dependencies (CVD) to improve

the accuracy of WEP forecasting. Drawing on insights gained from the experimental

comparisons in Chapter 3, it is evident that improved deep learning model design is

required to enhance forecasting accuracy, particularly in grids dominated by highly

varying renewable energy generation. This chapter incorporates datasets from four

regions with diverse grid conditions as a testbed for WEP forecasting.

The structure of this chapter is outlined as follows: Section 4.1 outlines the back-

ground, highlights the key challenges, and defines the research objectives and contribu-

tions of this chapter. Section 4.2 outlines the proposed forecasting framework. Section 4.3

presents the experimental setup, evaluation results, and key findings. Finally, Section

4.4 summarizes this chapter.

4.1 Motivation

As discussed in Section 2.1.2, WEP exhibits high volatility and is challenging to forecast

since it is impacted by multiple factors (e.g., decision-making across many distinct gener-
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ators, evolving operational constraints, shifting environmental conditions, infrastructure

availability and performance, and demand behavior) across multiple time scales (e.g.,

seasonal and daily demand patterns, long-term generation availability trends, and sud-

den outages) [68, 165–168]. Capturing CVD, GTD, and LTD is essential for enhancing

the accuracy and robustness of WEP forecasting. Capturing CVD enables the model to

account for the interconnected nature of key influencing factors, such as supply-demand

dynamics, weather variability, and fuel price fluctuations. Integrating GTD allows for the

incorporation of long-range temporal patterns, such as weekly or daily cycles. Modeling

LTD involves incorporating price change patterns occurring within hours. However,

multiple time periods exhibit overlapping and interdependent characteristics, making

the task of modeling these variations challenging.

Existing studies employing the patch/segment-based approach with fixed segmenta-

tion length and non-overlapping segmentation strategy for LTD extraction face several

challenges, as shown in Figure 4.1a. Overall, there are two main shortcomings: inter-

segment dependency misalignment and intra-segment information loss. Inter-segment

dependency misalignment, as illustrated in Figure 4.1a (1), refers to the lack of corre-

lation or misalignment between different segments or patches. Non-overlapping seg-

mentation with fixed length may cause the partitioned segments (i.e. the red dashed

boxes) to be less correlated, leading to local temporal dependencies being captured in-

effectively. For instance, a segment spanning 9:00 AM to 12:00 PM may show weak

correlation with its neighboring segment from 12:00 PM to 3:00 PM, illustrating inter-

segment dependency misalignment, where related patterns across segments are not

captured effectively.

Intra-segment information loss, as illustrated in Figure 4.1a (2), is the issue of losing

important information or patterns within a single segment. This is further divided

into two sub-challenges: 1) Local pattern capture deficiency refers to the difficulty in

capturing and modeling local patterns or dependencies within a specific segment. A high

correlation between two adjacent time windows is noted in a single patch, as shown in

Figure 4.1a (2.a). However, dividing time series data into segments with fixed length

may fail to capture this correlation. Within the same example segment mentioned above

(9:00 AM to 12:00 PM), local pattern capture deficiency may occur if the correlation

between adjacent time intervals, such as 9:15 AM to 9:45 AM and 9:45 AM to 10:15 AM,

is not effectively modeled due to insufficient temporal granularity, resulting in the loss of

fine-grained temporal dynamics within the segment. 2) Cross-segment dependency loss

relates to the inability to effectively capture and model dependencies within subseries
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(a)

(b)
Figure 4.1: The shortcomings of existing segment-based methods and our proposed
solution: a) Challenges of non-overlapping segmentation with fixed length. b) Our idea:
overlapping segmentation with varying lengths.

that span across segment boundaries, which is highlighted in Figure 4.1a (2.b). If a

correlation between the period from 8:30 AM to 9:30 AM and another time period exists,

the fixed segmentation boundary at 9:00 AM used in the above-mentioned example

segment may disrupt this continuity, resulting in cross-segment dependency loss as the

dependency spanning across segments is broken.

In practical WEP forecasting, the temporal patterns and dependencies within a

dataset can span diverse time scales. Crucial information exists within short-term

variations, while other important insights may be associated with longer-term trends.

One adaptable and flexible idea for time series segmentation, which can accommodate

patches of variable lengths, is illustrated in Figure 4.1b. In simple terms, segments

should overlap with their neighbors, and their length should range from short to long.

This design facilitates the modeling of local patterns with diverse fine-grained temporal

resolutions.
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Building upon the motivations outlined above, Local-Temporal Convolutional Trans-

former (LT-Conformer) is introduced as a novel model for WEP forecasting. The architec-

ture of LT-Conformer comprises three main modules: Local-Temporal 1D CNN (LT-1D

CNN), Global-Temporal Attention (GTA), and Cross-Variable Attention (CVA). As is

known, CNNs excel at extracting hierarchical features in time series data, capturing local

patterns at multiple scales with their variable-sized filters to recognize patterns across

different time periods [169]. The LT-1D CNN architecture is designed to leverage 1D con-

volutional filters of varying sizes over each time series within MTS, alongside multiple

kernel sizes, with a stride of one. This design facilitates the capture of local information

across a spectrum of scales, thereby providing a more nuanced and detailed feature map

that is expected to improve the effectiveness in capturing local temporal dependencies.

Leveraging the Transformer with proven capability in handling long-sequence textual

data, GTA captures global temporal dependencies, while CVA is adapted to incorporate

cross-feature dependencies in the MTS data.

4.2 Proposed Method

This section is organized as follows: Section 4.2.1 defines the forecasting problem and

formalizes the task setting. Section 4.2.2 presents an overview of the overall model

architecture and its key components. Section 4.2.2.1 introduces the LT-1D CNN, which

is designed to capture fine-grained local temporal dependencies. Section 4.2.2.2 details

the GTA Module for modeling long-range temporal dependencies. Finally, Section 4.2.2.3

describes the CVA Module for learning dynamic interactions across multiple input

variables.

4.2.1 Problem Description

In MTS forecasting, given historical observations X= {x1, . . . ,xT} ∈RT×N , T time steps

and N variates, the typical goal is to predict the future S time steps of multiple target

variables Y= {xT+1, . . . ,xT+S} ∈RS×N . In this chapter, the objective simplifies to forecast-

ing future S time steps of a single target variable e= {eT+1, . . . , eT+S} ∈RS. This chapter

focuses solely on forecasting WEP time series, using a set of N variates as features, such

as grid load demand (GLD) and variable renewable energy (VRE) generation, including

wind and solar sources.

WEP can exhibit significant volatility over short and long time-frames, while also
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often replicating local patterns, such as the typical daily price shape, timing of peak

prices, or differences in price profiles between weekdays and weekends, as illustrated in

Figure 4.2. The relationship between WEP, GLD, wind energy generation (WEG), and

solar energy generation (SEG) curves suggests the presence of cross-feature dependencies,

meaning each variable influences and is influenced by the others. For instance, high

WEG or SEG may coincide with low WEP due to the merit order effect1[170], while

high demand may lead to high WEP due to the need for more power generation from

expensive sources. This understanding highlights the importance of incorporating both

local and global temporal information as well as cross-feature dependencies into WEP

forecasting models.

LT-Conformer is designed to capture local temporal information across various scales

and manage global temporal and cross-feature dependencies through a combination

of components and mechanisms that work in harmony to forecast WEP with high

accuracy. The overall architecture and the individual components of the LT-Conformer

are presented in the subsequent sections.

4.2.2 Proposed Model Architecture

The overall architecture of the LT-Conformer is shown in Figure 4.3, which is composed of

three main components: the LT-1D CNN module, the GTA module, and the CVA module.

The LT-1D CNN module is responsible for extracting local temporal features from

the input MTS data. It consists of multiple 1D CNN layers, each of which applies 1D

convolutional filters to capture patterns and dependencies within the time dimension.

By using multiple 1D CNN layers with different kernel sizes, the model can effectively

capture local patterns at various time scales.

The output of the LT-1D CNN module is then fed into the Transformer module, which

incorporates two attention mechanisms: GTA and CVA. These attention mechanisms,

as derived from the TSA module in the Crossformer architecture [132], enable the

model to capture long-range dependencies and interactions within the MTS data. The

GTA mechanism allows the model to attend to relevant time steps across the entire

time series, enabling it to capture global temporal patterns and dependencies. This

is particularly useful for WEP forecasting, where events at different time points can

1In Australia, the merit order effect refers to the way in which different sources of electricity generation
are called upon or dispatched based on their marginal costs. Renewable energy sources, particularly wind
and solar, benefit from this due to their minimal costs of generation once the infrastructure (wind turbines
or solar panels) is established [170].
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Figure 4.2: WEP, GLD, WEG, and SEG at hourly intervals in the state of NSW, Australia
(16/05/2021-14/06/2021) from the AEMO [1] and OpenNEM [2].

influence future behaviors. The CVA mechanism facilitates capturing dependencies and

interactions across various variables or features in MTS data, which is crucial as complex

interdependencies often present among variables.

4.2.2.1 Local-Temporal 1D CNN Module

In order to incorporate LTD for MTS forecasting more effectively, an overlapping patch-

based method with non-fixed lengths is proposed. Indeed, the proposed method is de-

signed to manage local information along with its overlapping patterns within specific

time periods. This method essentially breaks down the time series into smaller, overlap-

ping patches or segments, each of which captures local temporal patterns. Allowing these

patches to overlap ensures continuity and captures the dependencies between adjacent
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Figure 4.3: Overall architecture of LT-Conformer.

time periods. By allowing for varying patch lengths within a predefined range, which is

optimized through grid search, the model can adapt to capture patterns and trends that

occur over varying lengths of time.

Note that CNNs are widely applied in the computer vision field [171, 172] and have

also been effectively adapted for time series data [134, 173–176]. They are proficient in

learning hierarchical features within data [169, 173, 177]. In time series analysis, this

capability allows them to capture local patterns and dependencies through their convo-

lutional filters, which scan the input data and extract localized features. Additionally,

CNNs can be designed with filters of varying sizes, which enables them to analyze the

data at multiple scales or resolutions [110, 178]. This is particularly useful for capturing

patterns that occur over different time periods.

As shown in Figure 4.4, 1D convolutional filters of varying sizes are applied across

the MTS data, with a stride of one. Specifically, a kernel size represented as 1×2 enables

the model to integrate information across a 2-h span, while a 1×3 kernel extends this

to 3 h, and so on. The underlying idea is that larger kernels have the potential to

integrate information over more extended temporal intervals, thus capturing longer local

temporal dependencies. The approach is designed to capture local dependencies and

extract features from different temporal contexts within the time series. Consequently,

the convolutional process is expected to yield feature maps of various dimensions. Given

the transposed input MTS data Xtr ∈RN×T , the convolutional operation can be formulated

as follows:

(4.1) F(k) =Conv1D(Xtr,K(k),stride= 1) ∈R(N×Zk)×(T−k+1)
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Figure 4.4: The architecture of LT-1D CNN.

where N is the number of features and T is the number of time steps. Zk is the number

of filters for the kernel size k ∈ {2,3, . . . ,d}. K(k) is the 1D convolutional kernel of size

(N ×Zk)×k. Conv1D(Xtr,K,stride= 1) denotes the 1D convolutional operation between

input Xtr and kernel K with a stride of 1 along the time dimension. The ReLU activation

function is applied to the output of the convolutional operation, introducing non-linearity

to the feature maps as follows:

(4.2) F(k)
ReLu =ReLU(F(k)) ∈R(N×Zk)×(T−k+1)

F(k)
ReLu is further reshaped from a 2D feature map to a 3D tensor, resulting in a flat-

tened feature vector as F′(k), preserving the feature and time information in a flattened

format as follows:

(4.3) F′(k) =Flatten(F(k)
ReLu) ∈RN×(T−k+1)×Zk
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4.2.2.2 Global-Temporal Attention Module

In this module, different sizes of flattened feature maps F′(k) are input to the multi-head

self-attention (MSA):

F̃′(k)
time =LayerNorm

(
F′(k)+

MSAtime(F′(k),F′(k),F′(k))
)

(4.4)

(4.5) F′(k)
time =LayerNorm

(
F̃′(k)

time +MLP(F̃′(k)
time)

)
where MSAtime is the MSA mechanism applied along the time dimension, taking F′(k) as

the query, key, and value inputs. F̃′(k)
time is an intermediate tensor obtained after applying

the MSA mechanism and layer normalization to F′(k). MLP represents a multi-layer

perceptron applied to F̃′(k)
time. F′(k) is the final output tensor after applying the MLP and

another layer normalization to F̃′(k)
time.

4.2.2.3 Cross-Variable Attention Module

Comparing with the TSA approach [132], which employs a routing mechanism to extract

dimensional features for complexity reduction, our CVA module applies MSA directly to

F′(k) to avoid the potential noise introduced by the utilization of a routing matrix:

(4.6) Fdim =MSAdim

(
F′(k)

time,F
′(k)
time,F

′(k)
time

)

(4.7) F(LN)
dim =LayerNorm(Ftime +Fdim)

(4.8) Fdim =LayerNorm
(
F(LN)

dim +MLP(F(LN)
dim )

)
where MSAdim is the MSA mechanism applied along the feature dimension, taking F′(k)

time

as the query, key, and value inputs. F(LN)
dim is the tensor obtained after applying layer

normalization to the sum of Ftime and Fdim. Fdim is the final output tensor after applying

the MLP and another layer normalization to F(LN)
dim .
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4.3 Experiment

This section is structured as follows: Section 4.3.1 describes the datasets used in this

chapter. Section 4.3.2 outlines the experimental settings and evaluation protocols. Sec-

tion 4.3.3 presents comparative forecasting results, including overall performance and

results under varying WEP levels. Section 4.3.4 evaluates the effectiveness of the pro-

posed LT-1D CNN.

4.3.1 Data Sets

To assess the performance of the LT-Conformer model for WEP forecasting, this chapter

has selected four states in Australia: New South Wales (NSW), South Australia (SA),

Queensland (QLD), and Victoria (VIC). The selection of these regions for our case study

aims to validate the ability of the LT-Conformer model to handle the intricacies of WEP

forecasting in conventional and renewable-centric energy markets.

The penetration of electricity generation by each type of energy source in four regions

from 2021 to 2023 is shown in Figure 4.5. NSW, located in the south-eastern region of

Australia, is the most populous state and relies on non-renewable energy sources, such

as coal and gas, which accounted for approximately 70.5% of total electricity generation

during this period, as shown in Figure 4.5 (a). VIC, also in the south-eastern region,

exhibits a broadly similar reliance on non-renewables but features a different mix of

renewable generation, with a greater contribution from solar and hydro and relatively

less from wind, as shown in Figure 4.5 (d). QLD, a traditional fossil-fuel-dominated

grid located in the north-eastern region of Australia, demonstrates a strong dependence

on non-renewable sources, with coal and gas contributing over 86.2% of its electricity

generation, as shown in Figure 4.5 (c). Conversely, SA, a renewable-dominated grid

situated in the southern central part of Australia, predominantly generates its electricity

from renewable sources, including wind and solar, which together contributed around

71.3% of electricity generation in the region over the same timeframe, as shown in

Figure 4.5 (b).
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(a) (b)

(c) (d)

Figure 4.5: Different types of sources for electricity generation in NSW (a), SA (b), QLD
(c), and VIC (d) from 2021 to 2023.

The data sets encompass a temporal span from 1 May 2021 to 23 November 2023,

comprising data points collected at hourly intervals. For this analysis of LT-Conformer,

the input feature space is limited to four key variables: WEP, GLD, and generation

from VRE sources, specifically WEG and SEG. Those data, obtained from the AEMO
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platform [1] and OpenNEM platform [2] (the same source as in Chapter 3), are well-

validated and used in other published work [68, 167, 168].

The four variables have been selected for their strong influence on price in the

Australian market. Variations in GLD are a primary determinant of market-clearing

prices; higher demand levels typically lead to the dispatch of higher-cost generation

units, thereby increasing wholesale prices, especially during peak periods [16]. Con-

versely, during low-demand periods, surplus generation may drive prices down or even

result in negative pricing under high renewable output [16]. WEG and SEG, due to

their weather-dependent and limited controllability, introduce significant short-term

variability in supply. This intermittency can lead to rapid imbalances between genera-

tion and demand, resulting in price volatility [16, 179]. In particular, sudden drops in

VRE output may necessitate the rapid dispatch of higher-cost backup generators, while

unexpected surpluses may suppress prices or even lead to negative pricing under low

demand conditions [170, 179].

The focus of this chapter is to examine how model design impacts WEP forecasting

performance and how such design can be tailored to maximize accuracy. It is noted that

further performance improvements may be realized by tuning and/or expanding the

input feature set (e.g., incorporating weather data and forecasts, import/export capacities

of interconnected systems, fuel price information, etc.). This remains an important area

for future work that would complement the model design focus of this work.

There are some extreme price spikes possibly due to socio-political events, transmis-

sion line outages, or severe weather conditions. For the scope of this work, the forecasting

of extreme price events is not the focus, so a ceiling and floor are imposed on electricity

prices within a specified threshold. Following widely adopted practice in existing WEP

forecasting literature [68, 180–182], this capping method serves two primary purposes

within the modeling process. First, it mitigates the influence of extreme outliers, which

may distort the loss function during model training and lead to biased parameter esti-

mation. Second, it facilitates fair and consistent model evaluation by constraining the

analysis to typical price ranges that reflect standard market dynamics. For these selected

regions (NSW, SA, QLD, and VIC), the price range is defined as [−600, 600] AUD/MWh,

with any electricity price falling below this range capped at −600 AUD/MWh, and any

price exceeding the range capped at 600 AUD/MWh. This capping method was applied to

only around 1% of the total samples examined for four states.
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4.3.2 Experimental Setup

The MAE, RMSE, and Symmetric Mean Absolute Percentage Error (SMAPE) were

selected as the evaluation metrics. MAE provides a direct measure of the average

magnitude of forecast errors, while RMSE penalizes larger errors more heavily, making

it useful for highlighting significant deviations in WEP forecasts. SMAPE, unlike MAPE,

is bounded and symmetric, making it more stable when actual values are close to zero,

which is a common scenario in WEP series due to market volatility and negative pricing.

(4.9) RMSE =
√

1
n

n∑
i=1

(yi − ŷi)2

(4.10) SMAPE = 100
n

n∑
i=1

|yi − ŷi|
(|yi|+ | ŷi|) /2

To conduct a comparative analysis and verify the effectiveness of the LT-Conformer,

SOTA models have been chosen, known for their strong performance in MTS fore-

casting, specifically in the application of WEP prediction. These models include the

Crossformer [132], Informer [121], TimesNet [134], PatchTST [122], iTransformer [86],

and WPMixer [137].

The dataset is divided into samples, each encompassing 24 hourly input features

along with the next 24 h of WEP as prediction targets. These samples with distinct

input-output pairings are generated by sliding a 1-h window across the entire data

set, which results in 22,440 samples for each state. A modified 5-fold cross-validation

strategy was adopted in this chapter. The dataset was first divided into ten equal non-

overlapping partitions. Two distinct partitions were randomly selected as a test fold only

once, while the remaining partitions were used for training. This cross-validation method

was applied to both the proposed models and all compared models to ensure fairness.

To prevent temporal leakage at fold boundaries, adjacent samples were excluded from

both the training and test sets in each split. All reported results reflect the average

performance across the five test sets. This design exposes the models to a wide range

of temporal patterns, capturing variations across seasons, operational conditions, and

atypical events, while maintaining temporal continuity within each training segment.

Similar validation strategies have also been adopted in existing studies [183–187].
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Table 4.1: Optimal hyperparameters of LT-Conformer for WEP forecasting in NSW, SA,
QLD, and VIC.

Config NSW SA QLD VIC

Kernel size [1×2,1×3,1×4] [1×2, . . . ,1×6] [1×2, . . . ,1×6] [1×2, . . . ,1×6]

Kernel channels [4, 4, 8] [8, . . . , 8] [8, . . . , 8] [8, . . . , 8]

Multi-head attn 4 2 2 4

Encode layers 4 4 2 2

Dropout 0.01 0.01 0.001 0.01

Learning rate 0.001 0.001 0.001 0.001

Batch size 64 64 64 64

Epoch 150 150 150 150

Loss function MAE MAE MAE MAE

Optimizer Adam [188] Adam [188] Adam [188] Adam [188]

Input length 24 24 24 24

Prediction length 24 24 24 24

The grid search method was employed to fine-tune the hyperparameters of our

model, which include kernel size, number of channels, attention heads, encoder layers,

dropout ratios, and learning rate, among others. To determine the optimal configura-

tion of the varying-length convolutional kernels in the LT-1D CNN module, a range of

kernel size combinations was systematically evaluated. The search began with shorter

sequences starting from {1×2, 1×3} and gradually extended to more comprehensive sets

(e.g., {1× 2, 1× 3, 1× 4}, {1× 2, 1× 3, 1× 4, 1× 5}, . . . ), up to {1× 2, 1× 3, . . . , 1× 8},

enabling the model to capture local temporal patterns across multiple scales. For each

kernel size in a given combination, the number of output channels was chosen from [2,

4, 8], and all possible channel size configurations were evaluated. For example, for the

kernel set {1×2, 1×3, 1×4}, configurations such as {2, 2, 2}, {4, 2, 2}, {2, 4, 2}, and so

on, up to {8, 8, 8}, were tested. The final configuration was selected based on the best

validation performance. The optimal hyperparameter values for the LT-Conformer in

four states are presented in Table 4.1. Similarly, for benchmarking purposes, a grid

search optimization was conducted for the baseline models, calibrated specifically for

WEP forecasting, to ensure the identification of the most performant parameter config-

urations. The “MinMaxScaler” [188] normalization function was employed in both the

pre-processing and post-processing stages. Denormalization was also undertaken, which

is critical for ensuring that the evaluation metric reflects the true scale of the data.
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4.3.3 Comparative Results on Forecasting Performance

4.3.3.1 Overall Results

Table 4.2: Overall performance of LT-Conformer and baseline models based on average
MAE (AUD/MWh), RMSE (AUD/MWh), and SMAPE (%) across four states.

Model
NSW SA QLD VIC

MAE RMSE SMAPE MAE RMSE SMAPE MAE RMSE SMAPE MAE RMSE SMAPE

LT-Conformer 34.08 54.96 37.76 55.19 85.41 79.96 48.29 78.10 48.39 46.22 70.72 77.20

Crossformer [132] 81.82 187.06 67.32 149.02 325.72 125.48 140.53 383.60 88.29 89.75 152.68 105.34

Informer [121] 64.98 186.15 50.92 94.73 300.28 100.17 87.64 378.13 67.64 67.00 140.69 95.33

TimesNet [134] 48.49 162.13 41.97 85.24 292.13 96.94 78.29 357.29 60.72 54.54 113.72 84.25

patchTST [122] 45.83 172.87 39.68 83.41 291.72 95.64 73.97 374.13 58.49 52.63 124.08 83.17

iTransformer [86] 53.26 181.66 45.18 83.35 292.13 94.39 72.53 373.23 56.04 50.65 121.40 80.37

WPMixer [137] 46.37 172.94 40.03 82.93 290.90 93.28 72.55 372.66 55.86 52.11 123.81 82.76

The performance of all methods was evaluated using MAE, RMSE, and SMAPE in NSW,

SA, QLD and VIC, as shown in Table 4.2. Overall, the LT-Conformer model consistently

outperforms the other forecasting methods in all regions, demonstrating minimal error

across all evaluated metrics.

Figures 4.6 and 4.7 illustrate model performance on selected days in NSW, SA, QLD,

and VIC, covering both high and low WEP variability. These example cases were chosen

because they are broadly representative of the observed trends on days with high and

low variations for each state. The figure shows that LT-Conformer more accurately

tracks WEP values, even in the presence of price spikes. As noted in Figure 4.6, the LT-

Conformer model (represented by the dashed red line) closely tracks the actual WEP

values (solid black line), demonstrating its ability to accurately capture the fluctuations

and spikes in the WEP. Other models exhibit larger deviations from the actual WEP

values, particularly during the peak hours of the day. While there are some deviations,

the LT-Conformer model can capture both positive and negative actual WEP values more

accurately than the other models, closely following the rise and fall of prices throughout

the day.

In Figure 4.7, the actual WEP data show a relatively flat trend without large vari-

ations across the whole day. The LT-Conformer model also achieves superior results

compared with the other SOTA methods. These results demonstrate the adaptability of
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(a)

(b)

(c)

(d)
Figure 4.6: Forecasting results with MAE (AUD/MWh) for WEP showing large variations
in NSW (a), SA (b), QLD (c), and VIC (d).
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(a)

(b)

(c)

(d)
Figure 4.7: Forecasting results with MAE (AUD/MWh) for WEP showing small variations
in NSW (a), SA (b), QLD (c), and VIC (d).
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LT-Conformer in forecasting WEP and accurately tracking actual data, whether it shows

large fluctuations or remains relatively steady.

4.3.3.2 Results for Varying Levels and Volatility of WEP and REG

To provide insights into the robustness and adaptability of the models across diverse

market conditions, a performance analysis on forecasting accuracy was conducted for

various levels and volatilities of both WEP and REG in NSW, SA, QLD, and VIC. This

analysis specifically targeted forecasting accuracy across the values and volatility of

both WEP and REG, categorized as low, medium, and high based on their average

values and separately standard deviations over the 24 h test period. Each category

represented one-third of the data range, corresponding to the lower, middle, and upper

thirds, respectively.

The performance of the models across the defined ranges in both WEP values and

WEP volatility is shown in Figures 4.8 and 4.9 (for NSW and SA), and, in the interests of

space, in Figures A.1 and A.2 (for QLD and VIC) in Appendix A. The corresponding results

for REG values and REG volatility are presented in Figures 4.10 and 4.11 (for NSW and

SA), and in Figures A.3 and A.4 (for QLD and VIC) in Appendix A. The LT-Conformer

model exhibits the lowest MAE values across all three categories under diverse market

conditions and renewable output scenarios in four regions, demonstrating its forecasting

performance and adaptability.

In terms of levels of WEP and REG, the LT-Conformer model demonstrates high

forecasting accuracy under low WEP values, corresponding to market conditions such as

off-peak times with low GLD [16, 88], and under low REG values, which typically occur

at night for solar or during periods of low wind conditions. As WEP and REG values

increase to medium levels, the model continues to perform effectively, adapting to the

standard market dynamics characterized by a balanced supply-demand scenario, while

also maintaining accuracy under medium REG values associated with typical daytime

renewable output. In high WEP and REG value scenarios, the model adapts well to

periods of price spikes as well as peak solar or wind output.

When evaluating the volatility of WEP and REG, the LT-Conformer performs well

in forecasting WEP under low price variation scenarios, effectively capturing stable

market conditions, and under low REG volatility, such as during consistently sunny

or windy periods with stable renewable output. It maintains this performance under

medium levels of price and REG volatility, handling typical market variations and

routine fluctuations in solar and wind output adeptly. Even in cases of high price and
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(a)

(b)
Figure 4.8: Performance comparison on WEP forecasting across low, medium, and high
values in NSW (a) and SA (b).

REG volatility, the LT-Conformer outperforms other models, showcasing its robustness in

tracking significant price movements and adapting to rapid changes in renewable output,

such as sudden drops in solar output due to cloud cover or fluctuations in wind speed.

4.3.4 Effectiveness of Local Temporal 1D CNN

4.3.4.1 Evaluation on Local Temporal Fluctuation Sensitivity

In this analysis, the capability of LT-Conformer to capture local temporal dynamics

within WEP is explored. Particular interest is placed on understanding the short-term

(e.g., 2-4 h) fluctuations in WEP and their implications over extended periods. This forms

part of a post-hoc analysis conducted on the predictions of the model over the test data

set. To achieve this, the absolute differences D test
t between adjacent time points are first
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(a)

(b)
Figure 4.9: Performance comparison on WEP forecasting across low, medium, and high
volatility in NSW (a) and SA (b).

computed to quantify immediate changes within the test data sets. For the initial time

point in the time series, potential boundary issues are addressed by substituting the

median of the computed differences, ensuring a robust starting point for our analysis.

Given a time series in test data sets etest = {etest
1 , . . . , etest

Q } ∈ RQ , the difference D test at

each time point t is calculated as follows:

(4.11) D test
t =

|etest
t − etest

t−1| for t > 1,

median{D test
2 ,D test

3 , . . . ,D test
24 } for t = 1.

To capture changes over a period of p hours (where p is an integer greater than 1),

the average of p−1 adjacent differences is considered:

(4.12) C(p)
t = 1

p−1

p−2∑
i=0

D test
t−i ,
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(a)

(b)
Figure 4.10: Performance comparison on WEP forecasting across low, medium, and high
values of REG in NSW (a) and SA (b).

where C(p)
t represents the change over a p-hour period at time t.

Temporal differences within WEP are classified into three distinct levels of fluctuation.

Upon examining the differences over a p-hour interval, the average MAE for low, medium,

and high fluctuation levels, denoted as MAEp
low, MAEp

med, and MAEp
high is computed,

which corresponds to the lower, middle, and upper thirds of the WEP value distribution.

The experiment compares the LT-Conformer model with other baseline models in NSW

and SA, as shown in Table 4.3. The corresponding results for QLD and VIC are presented

in Table A.1 in Appendix A. The LT-Conformer model exhibits substantially lower MAE

compared with the other models across different levels of local WEP variability over

our three variability measurement periods. This indicates that the LT-Conformer model

is more robust to extreme fluctuations and volatility in the short term, due to the

ability of the LT-1D CNN to effectively capture and model local temporal patterns, even
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(a)

(b)
Figure 4.11: Performance comparison on WEP forecasting across low, medium, and high
volatility of REG in NSW (a) and SA (b).

during periods of high variability. Additionally, LT-Conformer demonstrates stability in

performance across varying local WEP variability.
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Table 4.3: Performance comparison based on average MAE (AUD/MWh) across different
levels of local WEP variability for 2 h, 3 h, and 4 h measurement periods in NSW and
SA.

Model

NSW SA

Low Med High Low Med High

2 h 3 h 4 h 2 h 3 h 4 h 2 h 3 h 4 h 2 h 3 h 4 h 2 h 3 h 4 h 2 h 3 h 4 h

LT-Conformer 23.29 20.10 19.00 28.61 29.11 29.77 50.34 53.03 53.48 42.27 37.49 36.34 46.21 47.28 47.76 77.09 80.80 81.47

Crossformer 67.19 65.48 65.16 68.85 68.59 68.26 109.42 111.39 112.04 119.98 116.14 114.81 127.23 128.60 128.25 199.88 202.34 204.03

Informer 44.71 41.68 40.62 49.69 49.97 50.43 100.54 103.29 103.89 62.88 59.49 58.51 71.36 72.34 71.70 149.95 152.36 153.97

TimesNet 26.94 23.38 22.46 33.37 33.10 33.41 85.18 89.02 89.62 54.32 50.14 48.33 61.75 61.63 60.71 139.66 143.96 146.69

patchTST 24.45 21.73 20.87 31.15 31.19 31.92 81.90 84.58 84.71 52.62 48.98 47.32 60.29 60.03 59.30 137.34 141.22 143.62

iTransformer 29.59 25.75 24.05 36.93 36.24 37.44 93.28 97.81 98.31 52.96 49.17 47.64 60.31 60.21 59.43 136.80 140.69 143.01

WPMixer 25.06 22.21 21.41 31.73 31.88 32.52 82.34 85.03 85.20 52.41 48.55 46.88 59.81 59.80 59.25 136.58 140.45 142.67

While comparative models perform worse than LT-Conformer across varying condi-

tions, some show relatively stronger performance among themselves. Among patch-based

methods, WPMixer [137] and PatchTST [122] stand out, effectively capturing multi-scale

temporal patterns through temporal basis decomposition while maintaining variable-

wise context. iTransformer [86], viewed as an extreme case of patch-based design, also

performs well by treating each variate as a token, allowing the efficient modeling of cross-

variable dependencies and preserving temporal dynamics via position-wise feed-forward

encoding and instance normalization. In contrast, Crossformer [132] performs poorly

under high variability, likely due to its inflexible segmentation being less adaptable

to the spiky and non-stationary nature of WEP. Interestingly, the point-wise model In-

former [121] remains competitive, outperforming Crossformer. This suggests that when

patch-based methods are not carefully aligned with the characteristics of the WEP, they

may underperform compared with well-designed point-wise models.

4.4 Summary

This chapter addresses the limitations of capturing LTD while integrating GTD and

CVD to improve WEP forecasting, using datasets from diverse regions with different

grid conditions. Specifically, the chapter introduced the LT-Conformer, a novel model for

MTS forecasting, which exhibits SOTA performance on day-ahead WEP prediction in

the Australian energy market, known for its significant volatility and rapid intraday

price spikes. The LT-Conformer utilizes an LT-1D CNN to effectively align inter-segment

dependency and preserve intra-segment information, which is crucial for capturing local

75



CHAPTER 4. A LOCAL-TEMPORAL CONVOLUTIONAL TRANSFORMER FOR
WHOLESALE ELECTRICITY PRICE FORECASTING

temporal information. The architecture extracts and integrates both local and global

temporal features and cross-feature interactions.

Empirical evaluations show LT-Conformer consistently outperforms contemporary

models in our study of four Australian electricity grids. Indeed, the best performing

comparative model has an MAE that is 1.34 times higher than LT-Conformer in NSW,

1.5 times higher in SA, and 1.5 times higher in QLD. The robustness and adaptability

of the model are confirmed through comparative analyses. Notably, the LT-Conformer

performs well across different WEP and fluctuation levels, indicating its versatility in

forecasting across stable, dynamic, and volatile market scenarios. Next, we extend the

ideas from LT-Conformer to further enhance MTS forecasting, focusing specifically on

the complex and challenging domain of CIF forecasting.
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Chapter 5

Joint Modeling of Local-Temporal and
Cross-Variable Dependencies under
Multi-Frequency for Average Carbon
Intensity Forecasting

As discussed in Section 2.1.1.3, it is essential to capture local-temporal dependencies

(LTD), cross-variable dependencies (CVD), and multi-frequency information (MFI) for

accurate carbon intensity factor (CIF) forecasting. As such, and drawing on findings in

Chapters 3 and 4, this chapter investigates a new source-aggregated approach (SAA)-

based deep-learning model focused on modeling fine-grained LTD, capturing dynamic

higher-order CVD, and the extraction of diverse MFI representations, with the goal of

enhancing the accuracy and adaptability of CIF forecasting in modern electricity grids.

In this chapter, the research motivation and key challenges are first introduced

in Section 5.1. Section 5.2 then presents the proposed deep learning framework for

forecasting. Section 5.3 describes the experimental setup, datasets, and evaluation

results, including both overall performance and supporting analyses. Finally, Section 5.4

summarizes the findings.

5.1 Motivation

As discussed in Section 2.1.1, a CIF dataset, often consisting of multiple interrelated time

series, typically exhibits short-term temporal dynamics within each series, interactions

among variables, and complex frequency characteristics.
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Current methods [132, 133, 138] attempt to model CVD but only capture partial

relationships among variables, often assuming static or linear interactions, which limits

their ability to fully capture the type of complex and evolving dependencies seen in the

CIF dataset, as discussed in Section 2.2.3.2. To address these limitations, this chapter

will propose the use of Local Multiple Regression (LMR) to dynamically estimate time-

varying dependencies among input variables. Moreover, all the possible combinations

of the input variables will be systematically encoded into structured tensors via LMR,

enabling CNNs to jointly process and learn expressive representations of CVD.

MTS data inherently reflect multi-frequency variation patterns, including both high-

frequency fluctuations and low-frequency trends shaped by diverse grid dynamics, as

discussed in Section 2.2.3.3. For instance, high-frequency components are associated with

rapid and abrupt changes, often driven by sudden demand shifts, REG intermittency, or

operational adjustments. A typical scenario occurs when wind and solar power generation

simultaneously decline, necessitating the dispatch of high-emission generators (e.g., coal

or gas) to meet peak demand, resulting in a sharp rise in CIF. Existing methods [145,

189, 190] typically employ a single wavelet basis, which restricts the ability to extract

diverse and complementary frequency characteristics from MTS data. Additionally, no

existing research considers modeling CVD under multi-frequency, limiting their ability

to capture the full spectrum of dynamic CVD. To address these issues, this chapter will

propose the simultaneous use of multiple types of wavelet functions to leverage their

distinct sensitivities to different signal structures. Additionally, the work will explore the

integration of CWT into the LMR framework to capture CVD at different time-frequency

resolutions.

5.2 Proposed Method

As defined in Section 4.2.1, the MTS forecasting task involves predicting the next S time

steps of a single target variable e= {eT+1, . . . , eT+S} ∈RS, using historical multivariate

inputs X ∈RT×N . In this chapter, the focus shifts to forecasting CIF.

The proposed SAA-based forecasting model, illustrated in Figure 5.1, integrates two

parallel modules: (1) Local-Temporal Multi-Wavelet Kernel Convolution (LT-MWKC),

which captures LTD enriched by MFI, detailed in Section 5.2.1, and (2) Cross-Variable

Dynamic-Wavelet Correlation Convolution (CV-DWCC), which models CVD under multi-

frequency, detailed in Section 5.2.2. The outputs from each module are first concatenated

and passed through fully connected (FC) layers, followed by a softmax-weighted fusion
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Figure 5.1: Overall architecture of the proposed model.

mechanism that adaptively integrates their contributions based on learned importance

scores.

5.2.1 Local-Temporal Multi-Wavelet Kernel Convolution Module

To effectively capture LTD in CIF forecasting, the proposed LT-MWKC module segments

the input into overlapping patches with varied lengths, allowing for modeling of LTD at

varying time spans, as shown in Figure 5.2. This varying-length design enables the model

to capture patterns and trends that may span over different local-temporal durations.

The overlapping design ensures continuity across adjacent time periods, preserving

fine-grained transitions and reducing boundary effects. Each patch is processed by

multi-wavelet in parallel kernels to extract a wealth of wavelet-specific MFI, while

wavelet-based 1D convolutions capture LTD across varying temporal durations.

Specifically, CNNs have proven effective in time series analysis [134, 173, 175–177]

due to their ability to capture hierarchical temporal features. Moreover, CNNs can be

structured with filters of varying sizes, allowing them to capture patterns at multiple

temporal resolutions [110, 178]. As shown in Figure 5.2, 1D convolutional filters with

varying kernel sizes are applied to the MTS input using a stride of one. Larger kernels

enable the model to aggregate information over longer time intervals, facilitating the

extraction of extended LTD. Furthermore, the CWT offers powerful multi-frequency anal-

ysis capabilities for non-stationary signals [191–193], due to its continuous translation

and scale-sensitive structure, which enables effective time-frequency feature extraction

as an alternative to standard 1D convolutions. Instead of fixed-shape kernels, multiple
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Figure 5.2: The architecture of LT-MWKC.

types of wavelet functions (e.g., Morlet, Mexican Hat) are adopted as convolutional filters,

leveraging their complementary time-frequency characteristics to extract a wealth of

wavelet-specific MFI.

Consequently, the convolutional process is expected to yield feature maps of vari-

ous dimensions. Given the transposed input MTS data Xtr ∈ RN×T , the multi-wavelet

convolutional operation can be formulated as:

(5.1) F̂(k) = MWKC1D(Xtr, {Ψ(k)
m }M

m=1,stride= 1) ∈R(N×Zk)×(T−k+1),

where N denotes the number of input variables and T is the number of time steps.

Zk is the number of filters corresponding to kernel size k ∈ {2,3, . . . ,d}. Ψ(k)
m ∈R(N×Zk)×k

represents the m-th wavelet kernel of length k, derived from a distinct wavelet function

(e.g., Morlet, Mexican Hat), and M is the total number of wavelet types used. The

operator MWKC1D(·) denotes the 1D convolution operation using multi-wavelet kernels

with stride 1 along the temporal axis.
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Figure 5.3: The architecture of CV-DWCC.

To integrate the information captured by different wavelet types, the outputs of the

convolutional branches are fused through a learnable weighted mechanism. The fused

output is computed as:

(5.2) F̂′(k) =
M∑

m=1
αm · (Ψ(k)

m ∗Xtr),

where (Ψ(k)
m ∗Xtr) denotes the convolution of the input with the m-th wavelet kernel,

and αm is a learnable scalar that adjusts the contribution of each wavelet kernel. Fi-

nally, additional 1D convolutional blocks enhance the extracted representations F̂′(k) by

deepening local-temporal feature extraction and generating the final feature maps F̂′
LT.

5.2.2 Cross-Variable Dynamic-Wavelet Correlation Convolution
Module

To effectively capture CVD under multi-frequency, the CV-DWCC module is proposed,

which systematically quantifies dynamic correlations among all the possible combinations

of the input variables at multiple frequency resolutions, as illustrated in Figure 5.3.

The module first computes Wavelet Local Multiple Correlation (WLMC) over time and

frequency for each variable combination, capturing how their interactions evolve at

different time-frequency resolutions. The dominant variable that maximizes the WLMC
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is selected within each combination, allowing the model to focus on the most influential

variable driving the interaction and reducing noise from less relevant contributors. By

learning rich correlation representations through 2D convolution, the CV-DWCC module

enables the model to effectively capture complex and evolving inter-variable structures.

WLMC [194, 195] is a wavelet-based method for measuring time-evolving, multi-

frequency correlations in non-stationary MTS. It identifies dominant variables by com-

puting the maximum coefficient of determination from locally weighted regressions on

wavelet coefficients, making it well-suited for capturing dynamic CVD in CIF forecasting.

The WLMC builds upon the concept of wavelet-based LMR, as introduced in [194, 195].

In this chapter, it is applied to the transposed input MTS data Xtr ∈ RN×T . For each

target variable Xtr
i ∈Xtr and a fixed time point s ∈ {1, . . . ,T}, the LMR loss is estimated

as the weighted sum of squared residuals:

(5.3) Ls =
∑

t
θ(t− s)

[
fs

(
X−i,t

)− X i,t
]2 ,

where θ(t− s) is a temporal weighting function assigning higher importance to obser-

vations near s, and fs(X−i,t) denotes the local regression function estimated from all

variables excluding the target Xi. The corresponding local coefficient of determination is

given by:

(5.4) R2
s = 1−

∑
tθ(t− s)

[
fs(X−i,t)− X i,t

]2∑
tθ(t− s)

[
X i,t − X̄ i,s

]2 ,

where X̄ i,s is the locally weighted mean of Xi.

To capture time-frequency localized CVD, CWT is applied to each input variable

instead of the Maximal Overlap Discrete Wavelet Transform (MODWT) used in [194,

195]. CWT provides better time-frequency resolution and is particularly effective for

modeling short-term variability and MFI. Let W j,t = (w1, j,t, . . . ,wN, j,t) represent the CWT

coefficients of each variable at scale j = 1, . . . , J. The WLMC coefficient ϕX ,s( j) at each

scale j and time s is computed as the square root of the local coefficient of determination

corresponding to the dominant variable:

(5.5) ϕX ,s( j)=
√

R2
j,s(i

∗
j,s) , where i∗j,s = argmax

i∈{1,...,N}
R2

j,s(i),

where R2
j,s(i) measures the local regression fit for variable Xi at time s and scale j, and

i∗j,s denotes the index of the dominant variable that maximizes R2 at that time and scale.

WLMC is applied across all the possible combinations of the input variables derived

from the input Xtr, forming structured correlation tensors C ∈RN ×J×T , where N is the
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number of combinations, J is the number of CWT scales, and T is the time dimension.

In parallel, the dominant-variable for each variable combination is selected as the one

that maximizes the local multiple correlation R2
j,s(i) at each scale j and time step s.

These WLMC feature maps and corresponding dominant-variable feature maps are then

processed jointly by 2D convolutional layers, formulated as follows:

(5.6) FP =Conv2D([CP ∥DP ],KCV),

where CP ∈ RJ×T is the WLMC feature map for a given variable combination P ,

DP ∈ RJ×T is the corresponding dominant-variable feature map, ∥ denotes channel-

wise concatenation, and KCV is a learnable 2D convolutional kernel.

5.3 Experiment

In this section, the experimental setup and evaluation results are presented. Section 5.3.1

introduces the datasets used for model training and testing. Section 5.3.2 describes the

experimental configuration. Section 5.3.3 reports the overall forecasting performance

across different markets. Section 5.3.4 conducts ablation studies to assess the individual

contributions of each proposed module. Finally, Section 5.3.5 analyzes key temporal and

variable contributions in a case study.

5.3.1 Data Sets

Four states in Australia are selected in this chapter: New South Wales (NSW), South

Australia (SA), Queensland (QLD), and Victoria (VIC). The characteristics of each state

are discussed in Section 4.3.1. These states are chosen to evaluate the model under

diverse conditions, as they represent varying levels of renewable energy penetration,

demand patterns, and carbon intensity variability. The datasets span from January 1,

2020, to December 31, 2023, with data collected at hourly intervals.

Five relevant input variables, including CIF, GLD, REG, NEG, and temperature,

are considered, which have been commonly used in prior studies [26, 43, 44, 47, 50, 51].

These datasets are sourced from the AEMO [1] and OpenNEM [2] platforms (consistent

with the data sources used in Chapters 3 and 4). Rather than seeking optimal CIF

forecasting through an exhaustive dataset, this chapter focuses on evaluating the relative

performance of different modeling methods and structures using a limited set of input

variables. Future work could further enhance the performance within each method or

structure by refining input data selection.
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5.3.2 Experimental Setup

The evaluation of model performance is conducted using three metrics: RMSE, MAE,

and SMAPE. These metrics are selected for CIF forecasting to ensure consistency with

WEP forecasting, as discussed in Section 4.3.2, since both tasks involve similar MTS

forecasting challenges.

To ensure a comparative analysis and validate the effectiveness of the proposed model,

benchmark models commonly used in CIF forecasting, along with SOTA methods in MTS

forecasting, are selected. LSTM and SVR, two widely used models in CIF forecasting

research, are included for performance comparison [32, 44, 47, 49, 50]. Additionally,

SOTA deep learning methods designed for MTS forecasting are incorporated, including

LSTNet [127], Crossformer [132], Informer [121], TimesNet [134], DLinear [196], Non-

StaFormer [142], PatchTST [122], iTransformer [86], TimeMixer [197], WPMixer [137].

The dataset is structured into samples, each consisting of 24 hours of input variables

and the subsequent 24 hours of CIF as prediction targets. These input-output pairs are

generated using a sliding window method with a 1-hour step, producing a total of 35017

samples per state. The same 5-fold cross-validation strategy as that described in Section

4.3.2 is employed. The final experimental results represent the average performance

across all five test folds.

A grid search method was employed to fine-tune the hyperparameters of the proposed

model separately for each state. The optimal configurations for NSW, SA, QLD, and VIC

are summarized in Table 5.1. To ensure fair comparison, grid search was also applied to

all other compared models, with tuning performed specifically for the CIF forecasting

task. Additionally, MinMaxScaler normalization was used during both pre-processing

and post-processing. Denormalization was applied after prediction to restore the data

scale, ensuring that evaluation metrics accurately reflect real-world performance.

5.3.3 Overall Results

The performance of all models was assessed using RMSE, MAE, and SMAPE for NSW,

SA, QLD, and VIC, as detailed in Table 5.2. Across all evaluation metrics, the proposed

model consistently achieved the most accurate predictions in four regions.

The forecasting performance of the proposed model against SOTA models under

varying grid conditions is illustrated by presenting results on representative days in

Figure 5.4 and 5.5. These cases are selected based on the largest and smallest variations

in the CIF observed in NSW, SA, QLD, and VIC over the test period. In Figure 5.4,
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(a)

(b)

(c)

(d)
Figure 5.4: Forecasting results with MAE (g CO2-e/kWh) for WEP showing the largest
variations in NSW (a), SA (b), QLD (c), and VIC (d).
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(a)

(b)

(c)

(d)
Figure 5.5: Forecasting results with MAE (g CO2-e/kWh) for WEP showing the smallest
variations in NSW (a), SA (b), QLD (c), and VIC (d).
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Table 5.1: Optimal hyperparameters of the proposed model for CIF forecasting in NSW,
SA, QLD, and VIC.

Module Configuration NSW SA QLD VIC

LT-MWKC

CWT: Wavelet types [Morlet, Laplace,
Sine, Mexican Hat]

[Morlet, Laplace,
Sine, Mexican Hat]

[Morlet, Laplace,
Sine, Mexican Hat]

[Morlet, Laplace,
Sine, Mexican Hat]

CWT: Scales 1 to 4 1 to 4 1 to 4 1 to 4

MWKC: Channels 4 4 4 4

MWKC: Kernel size [1×2, . . . ,1×5] [1×2, . . . ,1×5] [1×2, . . . ,1×5] [1×2, . . . ,1×5]

Conv1D: Channels 16 32 16 32

Conv1D: Activation GELU GELU GELU GELU

CV-DWCC

CWT: Wavelet type Morlet Morlet Morlet Morlet

CWT: Scales 1 to 12 1 to 12 1 to 12 1 to 12

Conv2D: Layers 2 2 2 2

Conv2D: Channels [16, 32] [32, 64] [16, 16] [32, 32]

Conv2D: Kernel size 3×3 3×3 3×3 3×3

Conv2D: Activation GELU GELU GELU GELU

Prediction

Fusion weights Learnable Learnable Learnable Learnable

Loss function MAE MAE MAE MAE

Optimizer Adam Adam Adam Adam

Activation GELU GELU GELU GELU

Learning rate 0.0001 0.0001 0.0001 0.0001

which corresponds to high-variation scenarios, the proposed model (red dashed line)

aligns closely with the actual CIF curves (black solid line), capturing rapid changes

and turning points more accurately than competing SOTA models. Notably, while some

alternative models, such as NonStaFormer or TimesNet in Figure 5.4 (b) partially follow

the trend, they tend to either smooth out peaks or lag behind sharp transitions. This

limitation is particularly critical in scenarios where CIF forecasts are used for day-ahead

load scheduling and operational planning. In contrast, as shown in Figure 5.5, the CIF

series are relatively stable, and the forecasting task involves maintaining accuracy over

flatter trajectories. Under these conditions, the proposed model continues to outperform

other methods, maintaining a lower error and closely tracing the observed values. These

examples reinforce the effectiveness of the proposed model in adapting to both volatile

and steady grid CIF patterns.

5.3.4 Ablation Study

The proposed model includes two key modules: LT-MWKC and CV-DWCC. To assess

their individual impact on forecasting performance, an ablation study is conducted. The

87



CHAPTER 5. JOINT MODELING OF LOCAL-TEMPORAL AND CROSS-VARIABLE
DEPENDENCIES UNDER MULTI-FREQUENCY FOR AVERAGE CARBON INTENSITY
FORECASTING

Table 5.2: Overall performance of the proposed model and SOTA models based on RMSE
(g CO2-e/kWh), MAE (g CO2-e/kWh), and SMAPE (%) in NSW, SA, QLD, and VIC.

Model

NSW SA QLD VIC

RMSE MAE SMAPE RMSE MAE SMAPE RMSE MAE SMAPE RMSE MAE SMAPE

(g CO2-
e/kWh)

(g CO2-
e/kWh)

(%) (g CO2-
e/kWh)

(g CO2-
e/kWh)

(%) (g CO2-
e/kWh)

(g CO2-
e/kWh)

(%) (g CO2-
e/kWh)

(g CO2-
e/kWh)

(%)

Proposed model 47.09 36.56 5.25 99.27 70.29 32.21 31.17 19.46 2.96 79.36 57.93 7.13

LSTM [48] 55.57 43.59 6.25 147.51 109.07 47.19 50.01 32.28 5.02 114.06 84.31 10.40

SVR [49] 67.58 46.76 6.73 154.75 116.42 53.29 58.24 39.23 6.01 145.87 110.35 13.55

LSTNet [127] 50.53 39.45 5.68 125.35 96.23 43.37 52.08 38.98 5.99 98.85 76.72 9.53

Crossformer [132] 51.68 40.72 5.82 130.51 101.15 45.01 39.81 28.71 4.47 91.08 70.88 8.78

Informer [121] 66.80 50.10 7.35 158.95 124.54 54.30 51.91 37.42 5.82 141.54 112.64 13.81

TimesNet [134] 49.33 38.20 5.49 132.98 98.21 43.61 38.41 25.61 3.87 96.11 72.28 8.80

DLinear [196] 50.57 39.26 5.63 135.74 106.64 47.03 42.50 28.85 4.54 97.67 74.79 9.31

NonStaFormer [142] 49.12 38.17 5.51 126.77 96.07 43.10 39.62 26.82 4.04 95.09 73.36 8.89

PatchTST [122] 48.79 37.45 5.38 139.49 102.92 44.71 39.08 25.64 3.87 99.80 74.75 9.10

iTransformer [86] 48.08 37.10 5.33 132.99 98.02 43.32 48.20 33.36 4.99 110.66 85.58 10.37

TimeMixer [197] 47.79 36.79 5.28 134.50 100.95 44.67 39.08 25.99 3.93 96.31 72.34 8.81

WPMixer [137] 49.64 38.19 5.47 143.20 106.69 46.55 39.02 25.51 3.84 102.08 76.96 9.37

complete model is used as the baseline, and two ablation scenarios are evaluated: 1)

without (w/o) LT-MWKC and 2) w/o CV-DWCC. The results in Table 5.3 reveal insights

as follows:

1. Removing LT-MWKC leads to a 22.0% increase in MAE in NSW, a 42.8% increase

in SA, a 31.8% increase in QLD, and a 30.3% increase in VIC, highlighting the

importance of localized temporal pattern extraction enriched by MFI. Without this

module, the model struggles to capture short-term variations, especially under

high volatility conditions like those in SA.

2. Excluding CV-DWCC results in even larger performance degradation: MAE in-

creases by 52.5% in NSW and 48.8% in SA, 61.4% in QLD, and 46.6% in VIC.

This confirms that effectively capturing dynamic cross-variable dependencies at

different time-frequency resolutions is highly beneficial for accurate forecasting.
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Table 5.3: Ablation study results on forecasting performance in NSW, SA, QLD, and VIC.

Ablation setting

NSW SA QLD VIC

RMSE MAE SMAPE RMSE MAE SMAPE RMSE MAE SMAPE RMSE MAE SMAPE

(g CO2-
e/kWh)

(g CO2-
e/kWh)

(%) (g CO2-
e/kWh)

(g CO2-
e/kWh)

(%) (g CO2-
e/kWh)

(g CO2-
e/kWh)

(%) (g CO2-
e/kWh)

(g CO2-
e/kWh)

(%)

w/o LT-MWKC 57.90 44.60 6.55 132.89 100.37 44.59 44.66 25.64 4.14 101.80 75.46 9.34

w/o CV-DWCC 70.47 55.78 8.22 137.73 104.56 46.00 48.80 31.41 4.73 111.54 84.91 10.47

Complete model 47.09 36.56 5.25 99.27 70.29 32.21 31.17 19.46 2.96 79.36 57.93 7.13

5.3.5 Interpretability

Grad-CAM is a model-specific explainability technique designed for CNNs. It identifies

the most influential regions of an input by computing the gradients of a target output (e.g.,

a class score or forecast value) with respect to the feature maps in the final convolutional

layers. These gradients are used to generate heatmaps that highlight spatial regions

contributing most to the prediction of the model. This enables a systematic evaluation of

whether the model bases its predictions on relevant and interpretable input patterns.

Motivated by the fact that it has been used in both computer vision [198, 199] and MTS

analysis tasks [200, 201]. It is utilized to provide insights into the prediction mechanism

of the proposed model.

As a very preliminary demonstration of the interpretability of the proposed model

and to provide further insight into model behavior, an atypical grid event from SA

is analyzed. At around 4:00 PM on 12 November 2022, severe weather triggered a

double-circuit transmission tower failure in SA, causing both the South East-Tailem

Bend 275 kV lines and the Keith-Tailem Bend 132 kV line to trip, as reported in

[202, 203]. This event isolated the SA power system from the NEM, leading to frequency

and voltage fluctuations. High levels of REG, particularly distributed photovoltaics,

increased system management challenges during the separation. To maintain system

stability, REG was curtailed, while NEG was increased to provide essential frequency

control services, as shown in Figure 5.6. The prediction on 13 November 2022 shows

good performance, indicating the ability of the model to learn how the grid responds

to significant operational disturbances and capture the trend following the atypical

incident.

Grad-CAM scores averaged across input variables and plotted over 24 time steps are

shown in Figure 5.7. A clear rise is observed after the atypical event at time step 16
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Figure 5.6: Predicted CIF for 13 November 2022 based on MTS input from 12 November
2022.

(4 PM, November 12, 2022), indicating increased model attention following the outage.

The importance of input variables over time steps is visualized in Figure 5.8, showing

that during the initial period following the incident, when REG is curtailed and NEG
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Figure 5.7: Grad-CAM scores averaged across input variables, showing hourly overall
feature importance on 12 Nov 2022.

Figure 5.8: Grad-CAM scores showing the hourly importance of input variables on 12
Nov 2022.

increases, the model appropriately prioritizes NEG. Afterwards, the model shifts focus to

REG, which is significantly lower than usual, and adjusts the forecast accordingly.

This case serves as a very preliminary investigation into model interpretability, and

further work in this space, particularly across a broad and representative set of scenarios,

would be valuable (though outside the scope of this work).

5.4 Summary

This chapter presents a novel SAA-based deep learning framework for short-term carbon

intensity forecasting, tailored to capture the intricate dependencies and complex patterns

from the CIF dataset. The proposed model integrates two parallel modules: an LT-MWKC

91



CHAPTER 5. JOINT MODELING OF LOCAL-TEMPORAL AND CROSS-VARIABLE
DEPENDENCIES UNDER MULTI-FREQUENCY FOR AVERAGE CARBON INTENSITY
FORECASTING

module for capturing localized temporal patterns enriched by MFI, and a CV-DWCC

module for modeling dynamic inter-variable dependencies across multiple frequencies.

Together, these components effectively address key limitations in existing methods,

particularly the inability to jointly capture LTD, CVD, and MFI.

Empirical evaluations on Australian electricity market data, covering NSW, SA, QLD,

and VIC, demonstrate that the proposed model achieves SOTA performance across a

set of common performance metrics. In SA, where carbon intensity patterns are highly

volatile, the proposed model shows even more pronounced gains, achieving an MAE that

is 26.9% lower than even the best-performing comparative model examined.

Ablation studies confirm the complementary strengths of the LT-MWKC and CV-

DWCC modules, and while the preliminary analysis suggests that the model may be

usefully interpretable, as shown in the examination of a highly atypical grid outage

event.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

Accurate time series forecasting of WEP and CIF is vital to help the energy sector

transition toward optimized operations that support cost savings and sustainability. This

thesis addresses key challenges in capturing LTD, CVD, and MFI within MTS-based

forecasting of WEP and CIF. Deep learning models have been developed to effectively

model these essential dependencies and temporal patterns, and novel methods have been

proposed based on the deep learning models to enhance the forecasting accuracy of WEP

and CIF under the dynamic conditions of modern electricity grids. Using the Australian

electricity market (NSW, SA, QLD, and VIC) as a testbed, experiments were conducted

to evaluate the proposed methods across diverse grid settings, including fundamentally

different mixes of renewable and non-renewable generation. The results show that the

proposed models achieve SOTA performance in both WEP and CIF forecasting across

these diverse settings, demonstrating adaptability under varying modern grid conditions.

The main contributions of this thesis are summarized as follows:

• Empirical evaluation of two main paradigms for CIF forecasting: An empiri-

cal evaluation of two key modeling paradigms (the source-aggregated approach and

the source-disaggregated approach) for grid CIF forecasting was conducted. The

study examined how differences in fuel mix, renewable integration, and demand

dynamics impact forecasting performance. It identifies key operational contexts

where each paradigm excels and clarifies the trade-offs between complexity, in-

terpretability, and predictive accuracy. The insights gained from this preliminary

study provide a context and basis for the use of the SAA paradigm for CIF forecast-
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ing throughout the remainder of the thesis.

• A convolutional transformer model for WEP forecasting: A deep learning

framework is developed to address the challenges associated with accurately fore-

casting WEP in the presence of volatile and rapidly shifting market dynamics. The

model is specifically designed to overcome the limitations of existing methods in

capturing fine-grained LTD. It applies overlapping and variable-length segmenta-

tion strategies to better preserve local patterns across multiple temporal scales,

avoiding the loss of crucial information that occurs with current segmentation

methods. Additionally, the architecture incorporates attention mechanisms to cap-

ture global temporal trends and CVD. Empirical evaluations across four Australian

grids show LT-Conformer outperforming all comparative models, with the best

alternative exhibiting MAEs 1.5 times higher in SA and 1.5 times higher in QLD,

while maintaining robust performance across both varying WEP and REG levels

and their fluctuation levels.

• A wavelet-based convolutional model for CIF forecasting: A new SAA-

based deep learning model is proposed to address key challenges in short-term

grid CIF forecasting, particularly the difficulty of simultaneously capturing LTD,

evolving CVD, and MFI. The framework integrates: 1) one module to enhance

the extraction of local-temporal dependencies under multi-frequency by applying

multiple wavelet-based convolutional kernels to overlapping segments of varying

lengths; and 2) another module to capture dynamic cross-variable dependencies

under multi-frequency to model how inter-variable relationships evolve across the

time-frequency domain. Empirical evaluations on four Australian grids show the

proposed model achieves SOTA performance, with MAE in SA, where carbon inten-

sity is highly volatile, 26.9% lower than the best comparative model. Furthermore,

an initial analysis of the integrated interpretability mechanism suggests that the

model focuses on meaningful variables and temporal segments during an atypical

event.

6.2 Future Work

There remain several opportunities for further exploration and improvement in future

work:
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• While the proposed models demonstrate strong performance in the Australian

electricity market, further evaluation is needed to assess their scalability and

generalization capabilities across a wider range of geographical regions. Future

work should extend testing to countries with diverse market structures, renewable

penetration levels, fuel mixes, and regulatory environments.

• One important direction for future research is to evaluate the proposed models

across a broader set of MTS datasets from diverse application domains beyond

the energy sector. While the models demonstrated strong performance on CIF

and WEP forecasting tasks, further validation on datasets from areas such as

finance, healthcare, traffic prediction, and industrial monitoring could provide

deeper insights into their generalization capabilities.

• While the integration of Grad-CAM-based methods in the current models provides

useful insight into temporal and variable contributions, there is significant room

for expanding the interpretability framework. Future research could explore more

advanced or domain-specific explanation techniques to provide deeper and more

actionable transparency. Additionally, evaluating interpretability across a wider

range of forecast scenarios and engaging end-users in this process would provide

more practical insights.

• Building upon the forecasting models developed in this thesis, future work could

focus on the development of advanced load-shifting strategies that actively leverage

real-time CIF and WEP forecast signals. Predictive control methods could be

designed to dynamically adjust building operations, including HVAC scheduling,

battery management, and flexible load dispatch, in response to forecasted CIF and

WEP, ultimately reducing electricity costs and promoting more sustainable energy

use at the building level.
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Appendix A

More Experimental Results for QLD
and VIC

Table A.1: Performance comparison based on average MAE (AUD/MWh) across different
levels of local WEP variability for 2 h, 3 h, and 4 h measurement periods in QLD and
VIC.

Model

QLD VIC

Low Med High Low Med High

2 h 3 h 4 h 2 h 3 h 4 h 2 h 3 h 4 h 2 h 3 h 4 h 2 h 3 h 4 h 2 h 3 h 4 h

LT-Conformer 33.69 28.99 28.03 40.35 40.08 40.57 72.36 75.85 76.32 37.65 35.42 34.35 40.03 40.07 40.38 61.13 63.23 63.98

Crossformer 120.41 118.15 115.30 116.69 115.12 118.67 184.59 188.31 187.62 79.99 78.46 77.21 83.44 81.38 80.99 105.94 109.42 111.06

Informer 53.80 47.51 46.19 61.06 59.57 60.31 152.32 156.10 156.43 52.64 47.57 46.75 58.20 55.32 53.11 95.18 98.60 101.18

TimesNet 42.04 35.61 33.02 50.72 46.79 47.58 150.54 160.35 155.05 43.57 40.06 38.24 45.76 44.83 44.93 79.38 80.79 81.40

patchTST 38.23 32.20 30.22 46.36 42.70 43.99 141.93 147.30 147.72 41.70 38.07 36.83 43.54 43.54 43.13 76.19 76.65 77.95

iTransformer 37.16 31.14 29.17 45.25 41.90 43.51 139.75 144.89 144.93 40.22 36.90 35.79 42.29 42.33 41.98 72.91 73.12 74.23

WPMixer 37.23 31.52 29.42 45.32 41.77 43.40 139.68 144.71 144.86 41.30 37.62 36.38 43.30 43.37 42.95 75.28 75.74 77.03
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(a)

(b)
Figure A.1: Performance comparison on WEP forecasting across low, medium, and high
values in QLD (a) and VIC (b).



(a)

(b)
Figure A.2: Performance comparison on WEP forecasting across low, medium, and high
volatility in QLD (a) and VIC (b).
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(a)

(b)
Figure A.3: Performance comparison on WEP forecasting across low, medium, and high
values of REG in QLD (a) and VIC (b).
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(a)

(b)
Figure A.4: Performance comparison on WEP forecasting across low, medium, and high
volatility of REG in QLD (a) and VIC (b).
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[38] A. Çiğdem Köne and T. Büke, “Forecasting of CO2 emissions from fuel combustion

using trend analysis,” Renewable and Sustainable Energy Reviews, vol. 14,

no. 9, pp. 2906–2915, 2010.

https://doi.org/10.1016/j.rser.2010.06.006.

[39] J. Conrad, S. Greif, A. Regett, and B. Kleinertz, “Evolution und Vergleich der

CO2-Bewertungsmethoden von Wärmepumpen in: 3,” Dialogplattform Power
to Heat. Berlin: Energietechnische Gesellschaft ETG, VDE, 2017.

https://doi.org/10.13140/RG.2.2.21050.70083.

[40] A. Regett, F. Böing, J. Conrad, S. Fattler, and C. Kranner, “Emission assessment of

electricity: Mix vs. marginal power plant method,” in 2018 15th International
Conference on the European Energy Market (EEM), pp. 1–5, IEEE, 2018.

https://doi.org/10.1109/EEM.2018.8469940.

[41] A. D. Hawkes, “Estimating marginal CO2 emissions rates for national electricity

systems,” Energy Policy, vol. 38, no. 10, pp. 5977–5987, 2010.

https://doi.org/10.1016/j.enpol.2010.05.053.

[42] K. Leerbeck, P. Bacher, R. G. Junker, G. Goranović, O. Corradi, R. Ebrahimy,
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